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Abstract
We present a composite Compressed Sensing (CS) system for the efficient acquisition
and recovery of sparse and compressible time-varying signals. Sparsity Order Estima-
tion (SOE) is critical in determining the efficiency of CS acquisition and recovery because
the sparsity order parameter of an underlying signal plays an important role in determin-
ing the number of CS samples or measurements to be obtained from the underlying signal
during acquisition and the number of iterations required to recover the support of the un-
derlying signal during recovery. As a result, the proposed composite CS system is built by
vertically stacking a sparse Binary Sensing Matrix (BSM) and a dense Gaussian Sensing
Matrix (GSM), with the sparse BSM assisting the SOE during acquisition and recovery and
the GSM assisting reconstruction during recovery. The proposed sparse BSM is determin-
istic and adapts to the sparsity order variations for an efficient SOE. The GSM is dense and
random, and satisfies the Restricted Isometry Property (RIP) with an overwhelming proba-
bility for guaranteed recovery. Because of the BSM’s weaker RIP, we limit the number of
BSM-based measurements.

We propose the SOE based on two different Maximum Likelihood (ML) principles: (i)
BSM-based SOE (BSOE), which takes advantage of the sparse structure of the BSM and
the statistics of BSM-based measurements, and (ii) GSM-based SOE (GSOE), which takes
advantage of the statistics of GSM-based measurements. The proposed BSOE method does
not require any prior knowledge of the underlying signal, but it estimates the statistics of the
underlying signal, and thus the sparsity order, with a limited number of measurements. To
perform the SOE, the GSOE method requires statistical estimates obtained from the BSOE
method. We demonstrate that both ML estimation methods produce unbiased estimates,
and that the GSOE method meets the Cramer-Rao Lower Bound.

As the sparsity order varies over time owing to the continuous birth of newer supporting
components and the death of existing supporting components, we characterize the sparsity
order variation as a stochastic Markov birth-death process. A statistical measure, namely,
survival time, is introduced here to statistically quantify the degree and duration of invari-
ance of the sparsity order. We then refine the ML estimates of sparsity order using either
of the two independent approaches, namely, Viterbi algorithm-based ML sequence estima-
tion and Kalman filtering of ML estimation by exploiting the underlying discrete Markov
process and the survival time, which characterizes the sparsity order variation.
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We develop a BSM Aided Orthogonal Matching Pursuit (BAOMP) method for the
faster recovery of sparse and compressible signals. Although the sparse BSM is limited
owing to its weaker isometry bounds, each BSM-based measurement provides initial esti-
mates of the probable support candidates based on the location of those in the correspond-
ing BSM row. Because of these initial estimates, the number of iterations required for the
recovery algorithm is subsequently reduced, and the speed of recovery is improved by at
least 25% compared to existing recovery methods.

The proposed composite CS, ML sparsity order estimators, and BAOMP-based recov-
ery algorithms are practically implementable and can be used in real-world applications
such as (i) vibration signal acquisition and recovery, (ii) channel estimation, and (iii)

electro cardiogram signal recovery. The proposed method’s performance is then compared
to existing methods using metrics such as SOE error, Normalized Recovery Error, and run-
time complexities. The results on real-world and synthetic data show that the proposed
methods work with better performances, even with a low signal-to-noise ratio.
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Chapter 1

Introduction

The conventional data acquisition system acquires any band-limited continuous time-varying
signal x(t) of bandwidth B Hz by uniformly sampling at the Nyquist rate of at least 2B

samples per second to generate N samples in every time interval T . These N samples are
then transformed intoN coefficients using an orthonormal sparse representation transform,
or greater than N coefficients using an over-complete dictionary. Some of the orthonor-
mal sparse representation transforms are the Discrete Fourier Transform (DFT), Discrete
Cosine Transform (DCT), and Discrete Wavelet Transform (DWT), which are complete
dictionaries as the transformation has the same dimension as that of the signal dimension.
However, over-complete dictionaries are generally formed by the horizontal concatenation
of two or more orthonormal transforms such that the transformation has a higher dimension
than that of the signal dimension. The transformation is chosen such that the information
of x(t) is concentrated over a very small number of coefficients, such as k coefficients and
k � N . These k coefficients are termed significant coefficients because their amplitudes
and locations are sufficient to reconstruct x(t). It should be noted that the number of signif-
icant components k also varies in every time interval T , i.e., k → k(nT ) where nT denotes
nth time interval T and n is a positive integer. Thus, after transformation, these k(nT )

significant coefficients are retained and the remaining N − k(nT ) insignificant coefficients
are discarded. For brevity, we omit the notation nT in this chapter.

The differentiation of significant and insignificant coefficients is user-defined based on
some threshold τ , i.e., the coefficients having magnitudes above the threshold are termed
significant coefficients, and the remaining coefficients are termed insignificant coefficients.
In general, the magnitudes of the insignificant coefficients are mostly near zero. Thus, an
N−dimensional signal x(t) is reduced to 2k information, i.e., k amplitudes and k positions
in the orthonormal transform domain in a given time interval. In other words, the N time-
domain samples obtained in a time interval are compressed into 2k information samples or
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measurements. The number of significant coefficients in the transform domain represents
the sparsity order or sparsity level k of the signal and the set representing the collection of
locations or indices of such significant coefficients is the support S of the signal.

The aforementioned conventional data acquisition process is summarized in the follow-
ing sequential steps.

1. Sampling of the signal at Nyquist rate to result in N time-domain samples.

2. Transformation of the acquired samples using an orthonormal transform or an over-
complete dictionary to result in at least N transform-domain coefficients.

3. Retention of the significant transform domain coefficients and their locations to result
in 2k compressed samples or measurements.

Considering the orthonormal transform, because N coefficients are computed from N

Nyquist rate samples using N basis functions, the hardware complexity and the processing
power requirements depend on the dimension N . However, in the end, only 2k � N infor-
mation values are relevant, i.e., although the Nyquist rate results in N samples for a given
time interval, the effective information rate results in 2k � N information values for the
same time interval. Thus, there is a pressing need to acquire signals at the information rate
rather than at the Nyquist rate using alternate methods. To address this need, Compressed
Sensing (CS) [1, 2, 3, 4, 5, 6, 7] has emerged as an alternative method for acquiring a signal
with sparse or concise representation. CS theory addresses the following aspects.

1. Sparse representation of the signal.

2. CS acquisition to obtain the compressed samples or measurements directly from the
signal without applying the transformation.

3. CS recovery to reconstruct the signal using the obtained measurements.

1.1 Sparse representation

Most signals in nature are either sparse or compressible exhibiting conciseness when they
are transformed or represented using orthonormal basis functions or over-complete dictio-
naries. The concise representation of a signal x(t) is identified by the least linear combina-
tion of vectors of a basis function or atoms of an over-complete dictionary {ψ1,ψ2, ...,ψN}
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which resembles the original signal with minimal error, i.e.,

x(t) = s1(t)ψ1(t) + s2(t)ψ2(t) + ...+ sk(t)ψk(t) + ...+ sN(t)ψN(t).

Here si(t) : i = 1 to N are descending order sorted coefficients. If si(t) = 0 for i > k,
then x(t) is truly sparse signal and if |si(t)| < ε(infinitesimal) for i > k, then x(t) is
compressible signal.

1.1.1 True sparse signal

A signal x(t) is truly sparse if it can be represented on a suitable orthonormal basis or
dictionary Ψ such that x(t) = Ψs(t), and the representation s(t) has very few nonzero
components or coefficients compared to its dimension.

An example of a synthetic true sparse signal is shown in Figure 1.1. The discrete time-
domain representation of the signal is shown in Figure 1.1 (a) and its frequency-domain
representation using DFT and DCT are shown, respectively, in Figures 1.1 (b) and 1.1 (c).
The dimension of the true sparse signal is N = 512. The frequency-domain representation
using DFT has k = 32 nonzero coefficients whereas using DCT has k = 200 nonzero
coefficients showing that DFT results in a more sparse representation than DCT for the
given synthetic signal. It shows that generally the sparse representation differs for differ-
ent orthonormal transformations and some of the transformations result in a more concise
representation when the basis function or the dictionary matches with the signal character-
istics.

Some real-world examples of true sparse signals are the Channel State Information
(CSI) of OFDM channels [8, 9, 10] and the spectrum occupancy state of cognitive ra-
dio [11].

1.1.2 Compressible or sparse-approximated signal

A signal x(t) is compressible or sparse-approximated if its representation s(t) has all
nonzero coefficients and the descending order sorted magnitudes of the coefficients obey
the power-law decay [4], i.e., |s̃j| ≤ Cj−r where |s̃j| is the jth sorted magnitude and C > 0

and r > 0 are constants. If the signal decays rapidly, only a few coefficients have larger
magnitudes to be considered significant and the remaining coefficients have near-zero mag-
nitudes to be considered insignificant. Most real-world signals such as images, videos, and
audio are examples of compressible signals. In other words, the cumulative energy of
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(b) Sparse representation s(n) of x(n) with sparsity order k = 32 using DFT
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(c) Sparse representation s(n) of x(n) with sparsity order k = 200 using DCT

Figure 1.1: A synthetic true sparse signal in the time domain and frequency domain.
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the insignificant coefficients is very less compared to significant coefficients. For real-
world compressible signals, the significant coefficients are identified such that they hold
cumulatively 95 to 99% of energy of the signal and this percentage of cumulative energy
concentration distinguishing the significant and insignificant coefficients is user defined.

An example of a real-world compressible Electrocardiogram (ECG) signal of dimen-
sion N = 3500 is shown in Figure 1.2. The time-domain representation of the signal is
shown in Figure 1.2 (a). The frequency-domain representation of the signal using DCT
is shown in Figure 1.2 (b). It is observed that the sparse representation has very few sig-
nificant coefficients in the frequency domain. The descending order sorted magnitudes of
the DCT coefficients are shown in Figure 1.2 (c) which reveals that the signal is highly
compressible as the sorted magnitude decays rapidly obeying the power-law (exponential)
decay (with the parameters C = 5 and r = 0.54) and the insignificant coefficients are in
the tail region of the exponential decay. Here, 99% of total energy of the compressible sig-
nal is considered for distinguishing the significant and insignificant coefficients from the
descending order sorted coefficients. It is observed that 99% of the energy is concentrated
in the initial 500 sorted DCT coefficients. Thus, there are 500 significant coefficients and
3000 insignificant coefficients. Hence, the sparsity order is k = 500.

1.2 CS acquisition

CS acquisition in a discrete setting [1, 2, 3, 4] is a linear mapping of the N−dimensional
k−sparse or compressible signal x using an M ×N−dimensional measurement or sensing
matrix Φ to obtain an M−dimensional measurement vector y as shown below.

y = Φx + ϑ (1.1)

= ΦΨs + ϑ (1.2)

= Θs + ϑ (1.3)

where Θ = ΦΨ, and ϑ is the measurement noise. Here, k < M , k � N , and M < N .
The measurement matrix Φ is designed such that it satisfies the Restricted Isometry

Property (RIP) [1, 4], a property akin to the orthonormality of Fourier or wavelet matrices,
to recover all sparse signals with sparsity order k. The RIP is given as,

(1− δk) ≤
‖Θs‖22
‖s‖22

≤ (1 + δk) (1.4)
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where δk ∈ (0, 1) denotes the isometry constant of Θ. When δk = 0, the RIP becomes
‖Θs‖22 = ‖s‖22 which is a necessary condition for the orthonormal transform matrices.
However, for compressed sensing matrices M < N . Therefore, δk 6= 0. If δk is very
close to zero, i.e., if any subset of k columns of Θ is nearly orthonormal, the recovery
probability is very close to 1. In other words, the RIP guarantees that no two sparse signals
of sparsity order k can be mapped to the same y through Θ, i.e., the RIP preserves the
pairwise distance of any two k−sparse signals in the measurement space, as given below.

(1− δ2k) ≤
‖Θ(s1 − s2)‖22
‖(s1 − s2)‖22

≤ (1 + δ2k) . (1.5)

When δ2k �
√

2 − 1 for Θ, the recovery of any k− sparse signal is exact from the mea-
surement vector y using `1 norm minimization method [1]. However, identifying a sensing
matrix that satisfies the RIP is a Non-deterministic Polynomial time (NP)-hard problem, as
it requires

(
N
k

)
searches. Using probabilistic approaches, it has been proven that all M ×N

independent and identically distributed (i.i.d) Gaussian matrices satisfy the RIP with a high
probability when M ≥ c k log(N/k) for a small constant c [3, 4].

Another parameter equivalent to the RIP in governing the construction of the sensing
matrix is mutual coherence [3, 4, 12]. It measures the largest correlation factor between
the rows of the sensing matrix Φ and columns of the representation matrix Ψ. Mutual
coherence µ for Θ is defined as follows.

µ(Θ) = µ(Φ,Ψ) =
√
N max |〈Φi,Ψj〉| ; 1 ≤ i ≤M, 1 ≤ j ≤ N. (1.6)

Using Equation (1.6), it can be observed that 1 ≤ µ ≤
√
N . For CS, the mutual

coherence µ should be as low as possible, i.e., Φ and Ψ should be highly incoherent. This
can be achieved when each row Φi spreads out in Ψ and each column Ψj spreads out in
Φ. This also implies that the rows of Θ should be spread, rather than concentrated. If Φ is
constructed with i.i.d Gaussian entries, then the RIP and low mutual coherence conditions
are satisfied with a high probability for any fixed orthonormal basis Ψ. This is due to the
fact that the columns of Θ are mutually independent, and so are the rows of Θ as shown
below.

E{ΘHΘ} = E{ΨHΦHΦΨ} = ΨHE{ΦHΦ}Ψ = ΨHIN×NΨ = ΨHΨ = IN×N

E{ΘΘH} = E{ΦΨΨHΦH} = E{ΦIN×NΦH} = E{ΦΦH} = (N/M) IM×M
(1.7)

The mutual coherence values for various pairs of Φ and Ψ are listed in Table 1.1.
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Table 1.1: Mutual coherence among different pairs

Φ Ψ µ(Φ,Ψ)
Identity discrete Fourier 1
Identity Hadamard-Walsh 1
Noiselets Haar wavelets

√
2

Noiselets Daubechies D4 2.2
Noiselets Daubechies D8 2.9
Orthobasis uniformly at ran-
dom (basis with N orthonor-
malized vectors sampled inde-
pendently and uniformly on a
unit sphere)

Any fixed orthonormal basis ≈
√

2 logN

Random matrix with i.i.d Gaus-
sian or Bernoulli entries

Any fixed orthonormal basis ≈ 1

Using RIP and mutual coherence, it can be observed that random sensing matrices with
i.i.d Gaussian entries recover k−sparse signals with an overwhelming probability.

1.3 CS recovery

Because Equation (1.1) is a system of under-determined equations as M < N , there are
infinite solutions on solving s from y and Θ. However, utilizing the fact that the solution is
a sparse one, CS recovery solves Equation (1.1) using either convex relaxation techniques
or greedy techniques.

1.3.1 Convex relaxation techniques

Consider the noiseless case, i.e., y = Θs. If ŝ is one of the solutions, then ŝ + h is
another possible solution for any vector h belonging to the null space of Θ, i.e., h ∈
N (Θ). Therefore, the CS recovery algorithm searches for a sparse signal in the (N −M)-
dimensional null space,H = N (Θ) + ŝ.

One of the methods used to search and find a solution for the signal s from the measure-
ments y in the translated null space with the least `2 norm, i.e., minimal energy is given by

ŝ = arg min
s

‖s‖2 subject to y = Θs. (1.8)

This technique has a unique closed-form least-squares solution ŝ = ΘH
(
ΘΘH

)−1
y.
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However, the solution is not sparse because `2 norm distributes energy among all the com-
ponents of ŝ such that the energy of the solution vector ‖ŝ‖22 is minimum resulting in a
greater number of nonzeros in ŝ which makes the solution non-sparse.

Considering `0 norm1, which computes the number of nonzero elements, it is a suitable
candidate for finding the sparse solution. Searching for and finding a vector in the translated
Null space with the least number of nonzero components using `0 norm is given by

ŝ = arg min
s

‖s‖0 subject to y = Θs. (1.9)

However, solving Equation (1.9) is a numerically unstable and combinatorial NP-hard
problem, because the number of possible locations of k nonzero elements is

(
N
k

)
. Consider

the following example to understand the difficulty of performing `0 norm minimization.
Suppose N = 2000 and k = 20. Subsequently,

(
2000
20

)
= 3.9 × 1047 searches are required.

If each search requires 10−9 s, completing the search requires 1.2 × 1031 years, which is
impractical.

In general, when we move from `p norm minimization to `q norm minimization, such
that q < p, sparsity is promoted. Thus, `1 norm minimization prefers sparse solutions
to `2 norm minimization, as shown in Figure 1.3. Here a 2-dimensional sparse signal
s = {s1, s2} is considered, and a measurement y = φ11s1 + φ12s2 is obtained. The
measurement is represented by the line y = Θs. The `1 norm minimization is performed by
blowing a square ball from the origin, and its intersection with the measurement provides a
sparse solution. By contrast, `2 norm minimization is performed by blowing a circular ball
from the origin, and its intersection with the measurement provides the solution with the
least energy instead of the sparse solution.

Minimizing `1 norm is a convex relaxation method and is given by

ŝ = arg min ‖s‖1 subject to y = Θs. (1.10)

This convex relaxation problem can be reduced to a linear program by splitting s which
has both positive and negative values, into s1 and s2 which can only take positive values,
i.e., s = s1−s2. Equation (1.10) can be reframed as a linear program, as in Equation (1.11),

1`0 norm is not properly a norm as it is non-differentiable and non-convex.
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Figure 1.3: Comparison on `1 and `2 norm on finding the sparse solution.

which is known as basis pursuit [7].

ŝ = arg min ‖s‖1
= arg min

s1,s2

∑n
i=1 (s1(i)− s2(i)) subject to y = Θ (s1 − s2)

s1(i) ≥ 0, s2(i) ≥ 0

(1.11)

When considering the noisy case, i.e., y = Θs+ϑ, the following `1 norm minimization
with relaxed constraints, as given in Equations (1.12) and (1.13), is used for the recovery.

ŝ = min ‖s‖1 subject to ‖Θs− y‖2 ≤ ε (1.12)

ŝ = arg min
s

1

2
‖Θŝ− y‖22 + ν ‖ŝ‖1 (1.13)
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Equations (1.12) and (1.13) represent Basis Pursuit Denoising (BPDN) and Least Ab-
solute Shrinkage and Selection Operator (LASSO), respectively. Here, ε is the noise level
and ν is the tuning parameter related to the sparsity order k and the noise level. These con-
vex relaxation techniques are accurate, however, they generally have higher computational
complexity and longer recovery time compared to greedy techniques which are discussed
as follows.

1.3.2 Greedy techniques

The `1− minimization approach relies on linear programming, and the computational cost
of linear programming is burdensome for many applications. Hence, the greedy approach
has been widely used as a cost-effective and faster alternative to `1− minimization ap-
proach. Greedy techniques such as Orthogonal Matching Pursuit (OMP) [13], Compres-
sive Sampling Matching Pursuit (CoSaMP) [14], etc., are generally used for faster recovery.
These greedy techniques exploit the near-orthonormal properties of the column vectors of
the measurement matrix to search for the support indices of the signal in an iterative man-
ner. These techniques are usually initialized with a zero estimate of the sparse vector, i.e.,
ŝ0 = 0 and an empty support set, i.e, S = ∅. With this initialization, the initial residual
error is r0 = y −Θŝ0 = y. The proxy for the solution ŝ is ΘT r0 and the support S of the
sparse vector ŝ is updated by identifying the indices of the largest coefficients in the proxy
based on a greedy rule. The solution ŝ1 is then updated such that ŝ1S =

(
ΘT
SΘS

)−1
ΘT
Sy

and ŝ1SC = 0 where (i) ŝ1S is the estimate of nonzero components in ŝ1 identified by the
support S, (ii) the submatrix ΘS has column vectors of Θ identified by the support S and
(iii) ŝ1SC is the estimate of zero components in ŝ1 not identified by the support S. With the
updated solution, the residual is updated as r1 = y−Θŝ1 and the iteration continues. Thus,
each iteration updates the support S, thereby, decreasing the residual error r. The number
of iterations required depends on the sparsity order. After completing the iterations, the
signal is recovered as x̂ = Ψ−1ŝ.

The OMP and CoSaMP greedy algorithms, which are dependent on sparsity order k are
explained in the following sections.

1.3.2.1 OMP

In the OMP algorithm, the estimate for s is updated in each iteration by projecting y or-
thogonally onto the columns of Θ associated with the current support set S i. Consequently,
OMP minimizes ‖y −ΘSisSi‖22 over all s supported by S i. The OMP algorithm is refer-
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enced in Algorithm 1. The columns in Θ that are part of the support set Si must be orthog-
onal to the residual ri. This implies that these columns will not be chosen again for the
support set in the next iteration (and subsequent iterations), i.e., OMP never reselects an el-
ement and the residual at any iteration is always orthogonal to all of the current coefficients.
The name of the algorithm originates from this orthogonalization.

Algorithm 1 Orthogonal Matching Pursuit
Input:

• Sensing matrix Θ ∈ RM×N such that ‖Θj‖2 = 1 ∀j = 1 to N

• Measurement vector y ∈ RM×1

• Sparsity order k

• Iteration number i = 0

• Initial support S i = ∅
• Initial estimate of the sparse representation si = 0

1: while i < k do
2: i = i+ 1
3: ri = y −Θŝi−1 . Residual
4: z = ΘT ri . Proxy of the sparse representation
5: J = arg max

j
|zj| . Identify the index of coefficient with the largest magnitude

6: S i = S i−1 ∪ J . Update the support
7: ŝiSi =

(
ΘT
SiΘSi

)−1
ΘT
Siy . Update the significant coefficient

8: end while
Output: Estimate of the sparse representation: ŝ.

. OMP can be terminated with a stopping rule based on the reconstruction error ε, i.e.,
‖ri‖22 ≤ ε. However, it demands the noise structure a priori, i.e., the variance of noise ε as
given in [15]. Fixing the reconstruction error based on the noise structure may lead to early
termination resulting in poor reconstruction or late termination resulting in more execution
time. Hence, the stopping rule based on reconstruction error is not suitable.

1.3.2.2 CoSaMP

A weakness of the OMP algorithm is that, once an incorrect index J corresponding to the
column of Θ is selected in the estimated support S i, it remains in all subsequent estimated
support Sj : j > i. As a result, if an incorrect index has been selected, k iterations of
the OMP algorithm are insufficient to recover a vector with sparsity order k. One possible
solution is to increase the number of iterations required. The CoSaMP algorithm [14]
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proposes another strategy for estimating the sparsity order k. In contrast to OMP, in each
iteration, CoSaMP finds the support S i by selecting indices of 2k largest entries in the proxy
ΘT ri and merges it with the support corresponding to k largest coefficients of the previous
estimate of the sparse signal si−1 as shown in steps 4 and 5 of Algorithm 2. Subsequently,
it minimizes ‖y − Θb‖2 among all b with the support S i as shown in step 6. Then, the
k largest entries of b become the k largest coefficients of the estimated sparse signal and
the remaining N − k coefficients are zeros. This iteration continues until the energy of the
residual falls below a certain threshold, ε.

Algorithm 2 Compressive Sampling Matching Pursuit
Input:

• Sensing matrix Θ ∈ RM×N such that ‖Θj‖2 = 1 ∀j = 1 to N

• Measurement vector y ∈ RM×1

• Sparsity order k

• Iteration number i = 0

• Initial estimate of the sparse representation si = 0

• Initial residual ri = 0

1: while ‖ri‖22 > ε do
2: i = i+ 1
3: ri = y −Θŝi−1 . Residual
4: J i = L2k(Θ

T ri) . indices of 2k largest coefficients in ΘT ri
5: S i = S i−1 ∪ J i . updated support
6: b =

(
ΘT
SiΘSi

)−1
ΘT
Siy . estimate of largest coefficients

7: S i = Lk(b) . indices of k largest coefficients in b
8: ŝiSi = bSi and ŝi

(SC)i = 0 . estimate of best k−sparse approximation
9: end while

Output: Estimate of the sparse representation: ŝ.

In general, if the measurement matrix satisfies the RIP, then greedy techniques per-
form similarly to convex relaxation techniques with an overwhelming probability as shown
in [16, 17]. Both the convex relaxation and greedy techniques exploit the properties of the
underlying sensing matrix and sparsity order of the signal. Thus, the key components of
the CS are the combination of a sensing matrix and the inherent sparsity of the signal in a
suitable transform domain.
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1.4 The purpose of sparsity order estimation

For a practical CS system, the knowledge of the exact sparsity order of a compressible
signal is of great importance during CS acquisition and recovery. In the CS acquisition
stage, the sparsity order dictates the minimum number of measurements, i.e., the size of the
measurement vector to be acquired. In the CS recovery stage, the sparsity order controls the
quality of estimation of the compressible signal. Therefore, the Sparsity Order Estimation
(SOE) is crucial.

The number of CS measurementsM required for the perfect recovery of anN−dimensional
compressible signal using `1 norm based convex relaxation technique or greedy techniques
depends on the sparsity order k of the underlying compressible signal, and is given in [3, 4]
as

M ≥ 2k log

(
N

k

)
(1.14)

when the sensing matrix Θ obeys RIP [12] and the components of the sensing matrix Θ

are i.i.d random Gaussian variables. In many recovery algorithms, the optimal tuning of
parameters requires knowledge of the sparsity order of the underlying signal. For exam-
ple, in LASSO [5] techniques of convex relaxation-based CS recovery, as shown in Equa-
tion (1.13), the tuning parameter ν = σϑ

√
2 log k is a function of the sparsity order k and

the measurement noise level σϑ for perfect recovery. Similarly, for greedy algorithms, such
as OMP and CoSaMP, the recovery performance and number of iterations depend on the
sparsity order k.

Most CS studies assume that the sparsity order is known in advance [18, 19, 20, 21].
This assumption makes the practical applicability of the CS theory difficult. An improper
assumption of sparsity order during CS acquisition results in either an insufficient or an
excess number of measurements, and affects the quality of the reconstructed signal during
recovery. Similarly, improper assumptions during CS recovery result in either early or late
termination of CS recovery algorithms, leading to either poor reconstruction or resource
wastage.

1.4.1 Dynamic SOE

In many applications, the sparsity order, support, and amplitudes of the supporting com-
ponents are not only unknown but also time varying [22, 23, 24, 25, 26, 27]. For exam-
ple, in video imaging systems, the sparsity order and support vary between frames [27],
whereas in wireless communication systems, the sparse CSI and tap delay locations vary
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with time [26]. Therefore, in such practical systems, it is essential to estimate the sparsity
order at each time instant of observation during the acquisition and recovery of sparse or
compressible signals for better use of available resources. Therefore, the SOE in a dynamic
environment has become an important topic for both CS acquisition and recovery.

1.5 Relevant and recent literature on SOE

There are direct and indirect SOE methods for estimating the sparsity order. Direct SOE
methods are applicable for both CS acquisition and recovery, where the SOE is performed
without signal reconstruction. However, indirect SOE methods are only applicable during
CS recovery because the SOE is through the support estimation process of CS recovery.
Recent and relevant studies on direct SOE methods are available in [27, 28, 29, 30, 31, 32,
33, 34, 35, 36] and indirect SOE methods are available in [37, 38, 39, 40, 41, 42, 43, 44].

1.5.1 Direct SOE methods

In the seminal work by Lan et al. [27], the direct SOE for an image was based on image
complexity. Here, image complexity is estimated from the image texture and edge den-
sity using additional measurements that are not useful for image recovery. Other direct
SOE methods exploit the design and characteristics of sensing matrices and the temporal
correlation of the measurements, as discussed below.

1.5.1.1 SOE based on specially designed matrices

Direct SOE methods that use specially designed sensing matrices are available in [28, 30,
32]. Lopes [28] introduced the SOE for sparse signals from composite sensing matrix-
based measurements, where the composite sensing matrix comprises a random Cauchy
sensing matrix and a random Gaussian sensing matrix. Here, SOE is performed using the
ratio of `1 norm to `2 norm of the sparse signal. As the random Cauchy sensing matrix
preserves the `1 norm and the random Gaussian matrix preserves the `2 norm with over-
whelming probability, the ratio of `1 norm to `2 norm of the measurements is used for the
SOE. Although the measurements obtained using the random Cauchy sensing matrix are
used for the SOE, they are not helpful for recovery [30]. Moreover, the distribution of the
Cauchy sensing matrix entries depends on the knowledge of noise statistics.

The use of sparse random Gaussian sensing matrices for SOE of true sparse signals was
proposed in [30]. Owing to the sparseness of the sensing, the obtained measurements are
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distributed to a Gaussian mixture model parameterized by the sparsity order of the under-
lying signal. This mixture model is approximated as a two-component Gaussian mixture
model (2-GMM) so that the sparsity order can be easily estimated using the Expectation
Maximization (EM) technique. However, the 2-GMM approximation is valid for a certain
regime of signal’s sparsity (which is unknown) and measurement’s sparsity. In addition,
the accuracy of this approximation and the efficiency of the SOE depend on a priori infor-
mation about the unknown signal statistics, making the method practically infeasible. In
addition, the signal recovery performance degrades because of the larger mutual coherence
measure of the sparse Gaussian matrix.

A specially designed sensing matrix with a Khatri-Rao structure was recently presented
for SOE [32]. Here, a single measurement vector is obtained from a specially designed
matrix for the SOE. By suitable rearrangement of the obtained measurement vector into a
matrix, the sparsity order is estimated from the rank of the matrix. However, the construc-
tion of the specially designed matrix depends on the signal type and the SOE performance
is limited to a lower sparsity order.

1.5.1.2 SOE by exploiting the characteristics of random sensing matrices

Direct SOE methods that exploit the characteristics of random sensing matrices are avail-
able in [33, 34, 35, 36]. In [33], a spectrum sensing algorithm was used to solve an op-
timization problem to remove the measurement noise effect, followed by an energy mini-
mization problem using QR decomposition of the sensing matrix and applying a threshold
to obtain the sparsity order. This algorithm requires the signal and noise power to be known
a priori to tune the threshold parameter and is not suitable for estimating a higher sparsity
order.

Exploiting the autocorrelation and cross-correlation properties of the column vectors
of the Gaussian sensing matrix, a Two-Step Adaptive Compressive Spectrum Sensing (TS-
ACSS) was proposed in [34]. In the first step, a coarse SOE is performed by identifying
the slope change in the ordered arrangement of the inner product results of the column
vectors of the sensing matrix with the obtained measurements. The SOE is then refined
using the CS recovery of the spectrum and by comparing the estimates of the binary chan-
nel occupation in multiple iterations in the second step. This method not only requires
more measurements for SOE but also involves multiple iterations that make the method
computationally intensive and slow.

Recently, SOE was performed iteratively by exploiting the RIP of a random sensing
matrix with an isometry constant δk in [35]. Here, a Sparse Pre-estimated Adaptive Match-
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ing Pursuit (SPAMP) algorithm is introduced using the criteria of sparsity underestimation
and overestimation for the SOE. When a measurement vector y is obtained from the signal
with sparsity order k using a sensing matrix Θ, then the sparsity underestimation crite-
rion, i.e.,‖ΘT

Sy‖2 ≥ 1−δk√
1+δk
‖y‖2 is satisfied if the estimated support S of the underlying

signal has the cardinality k̂ < k. Otherwise, the sparsity overestimation criterion, i.e.,
‖ΘT
Sy‖2 ≥ 1+δk√

1−δk
‖y‖2 is satisfied if the estimated support S has the cardinality k̂ ≥ k.

Thus, iteratively, the underestimation and overestimation criteria are tested and the esti-
mated sparsity order k̂ is adjusted using two factors, i.e., a weak matching factor and an
estimation factor until k̂ = k. Both these factors must be optimally chosen so that the
trade-off between the speed of convergence and the accuracy of the estimation is min-
imized. However, their optimal values require knowledge of the sparsity order and are
difficult to fix in practical scenarios, because the sparsity order is unknown and varies over
time. In addition to this, computing δk for a given matrix Θ and sparsity order k is NP-hard
and not tractable as shown in [45].

In [36], a Sparsity Adaptive estimation Matching Pursuit algorithm based on a Sens-
ing Dictionary (SAMP-SD) was presented for SOE. The method presented here is similar
to that of [35], which considers the mutual correlation constant instead of the isometry
constant. Here, a sensing dictionary Σ and a measurement matrix Θ are constructed such
that they have the same dimensions, and Σ has a weak mutual correlation with Θ, i.e.,
ΣTΘ ≈ I. Thus, ΣTy provides an estimate of sparsity order. However, this SOE method
is not efficient for time-varying sparsity order as Σ and Θ must be cooperatively con-
structed using iterative algorithms when the size of the measurement vector changes with
the sparsity order.

1.5.1.3 SOE based on multiple observations

Within the Multiple Measurement Vector (MMV) framework, there exist direct SOE meth-
ods based on (i) the eigenvalues of the covariance matrix [46, 31] and (ii) the trace of the
covariance matrix [29]. All these MMV-based SOE methods require multiple snapshots
of the underlying signal and assume that the sparsity order is static during the period of
multiple observations.

Using the random matrix theory, an eigenvalue-based SOE method is presented in [46].
A lookup table is maintained here, with entries for eigenvalues and the corresponding spar-
sity order. The maximum eigenvalue of the covariance matrix of the measurement vectors
was calculated from multiple measurements, and the corresponding sparsity order was se-
lected from a lookup table. However, the computation of eigenvalues in this method results
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in high computational costs.
SOE was performed in [31] by identifying the slope change in the ordered eigenvalues

of the covariance matrix of the measurements. However, this method is computationally
intensive, similar to [46] for finding the eigenvalues, and is not suitable for estimating a
higher sparsity order.

From the trace of the covariance matrix of the measurement vectors, SOE was per-
formed in [29]. Although this method has comparatively less computational complexity
than eigenvalue-based methods, its performance is affected under the scenarios of uncorre-
lated measurement vectors.

1.5.2 Indirect SOE methods

A Relative Threshold-based Sparsity Estimation method (RTSE) is proposed in [37] which
performs SOE based on a reconstruction algorithm. Here, the threshold for finding the
largest components is based on the training set and cannot be fixed a priori limiting its
application.

The Sparsity adaptive Matching Pursuit (SaMP) algorithm [38] and its variants such as
the Adaptive Step size-SaMP (AS-SaMP) algorithm [39], Modified CoSaMP (MCoSaMP)
algorithm [44], and Sparsity Adaptive Segmented Orthogonal Matching Pursuit (SAS-
tOMP) algorithm [43], estimate the sparsity indirectly through a variable step size and
gradually increase the estimated support set to match the original. However, these SaMP
algorithms require a step size, whose optimal value depends on an unknown sparsity order.
An Optimized Adaptive Matching Pursuit (OAMP) algorithm was proposed in [40] which
is similar to SaMP except for the energy-entropy-based order determination in updating the
support.

Recently, Deterministic Binary Block Diagonal (DBBD) matrix-based sensing [41] and
Kronecker-based recovery [42] have been proposed for acquiring and recovering compress-
ible signals. Here, the DBBD sensing matrix reduces hardware complexity. However, its
structure accumulates the energy of significant neighboring components, making support
estimation difficult under noisy settings and leading to degraded recovery performance.

1.6 Literature on estimating time-varying signals

There exist literature on tracking of dynamic sparse signals [23, 26, 47] which assumes that
sparse signals are slow-varying and the amplitude of each supporting component varies
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according to a predefined Gauss-Markov model exhibiting temporal correlation. They re-
cover sparse signals by estimating the support and do not involve in sparsity order esti-
mation. Kalman filtering on CS recovery is proposed in [23] where support is estimated
using convex optimization based CS recovery. Dynamic Compressed Sensing Approxi-
mate Message Passing (DCS-AMP) based tracking is proposed in [26], where in addition
to amplitude modeling, the support is modeled using the Discrete Markov process. These
support estimation techniques require a longer execution time and are suitable only during
recovery and not during CS acquisition. An another method is Sparse Bayesian Learning
(SBL) [47] method which has a Bayesian approach. SBL models the amplitude of compo-
nents of sparse vector as Gaussian variables and their variances are hyper-parameters. From
the CS measurements, the Bayesian approach estimates the posterior density functions for
the values of non-zero components of signal. Since Bayesian approach provides full pos-
terior density function about the components of the signal instead of a point estimate, a
sense of confidence is possible for the estimates of non-zero components. In addition to
this, it provides estimate for the posterior density function for the noise involved in the
measurements. All these CS methods for estimating time-varying signals are useful during
recovery and not optimal for determining the number of measurements during acquisition.

1.7 The need for composite sensing

Composite sensing is a method of sensing sparse or compressible signals using two or more
CS measurement matrices. Inspired by SOE methods that perform estimation by exploit-
ing the characteristics of the sensing matrix design, a composite CS measurement system
for maximizing the SOE and recovery performance is presented in this research work. In
general, sensing or measurement matrices can be classified into two categories: random
and deterministic. The entries of the random sensing matrices are either i.i.d Gaussian or
Bernoulli variates. These random sensing matrices satisfy the RIP required for the perfect
recovery of the signal from the obtained measurements, and are nonadaptive and suitable
for recovering all types of sparse or compressible signals. However, they are not optimal
because they are primarily unstructured and not designed to exploit the structure of the sig-
nals. Compared to random sensing matrices, deterministic sensing matrices are fully struc-
tured and are signal- or application-specific. Chirp sensing matrices, Reed-Muller sensing
matrices, Binary Sensing Matrices (BSM) such as Quasi-Cyclic Low-Density Party Check
(QC-LDPC) matrices, and binary Bose-Chaudhuri-Hocquenghem (BCH) are examples of
deterministic sensing matrices. Recently, sparse BSM [48, 49, 50, 51, 52, 53, 54]-based
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CS measurement systems have been considered because they are multiplier-less (for time-
domain sparse signals) and perform faster compression. Although these matrices are simple
to implement, they possess the weaker RIP property2 [55] and require additional measure-
ments for recovery. However, the measurements obtained using these matrices have specific
statistical properties that are suitable for SOE. Considering the guaranteed RIP and SOE us-
ing random and deterministic matrices, respectively, the sensing matrix can be a composite
matrix comprising of both types of matrices for efficient CS acquisition and recovery.

1.8 Recent literature on composite sensing

Several studies have been conducted on composite sensing matrices [56, 28] that are used
for SOE and support estimation. A Hybrid Compressed Sensing (HCS) method was pro-
posed in [56], where two sub-matrices: a sparse complex-valued sub-matrix for support
estimation and a random dense real-valued sub-matrix for lowering the number of mea-
surements are used. Using this method, the success of signal recovery depends on the size
of both the submatrices. However, the size of the submatrices is a function of the spar-
sity order that is being estimated. The Lopes method [28] uses a different composite CS
measurement system comprising the Cauchy and Gaussian submatrices. This method is
inefficient because the matrices are designed with a priori knowledge of noise statistics
and the Cauchy matrix-based measurements are not helpful for recovery. Thus, there exists
a need to develop a composite sensing matrix that is suitable for SOE and recovery.

1.9 Motivations

The problems associated with the above-discussed existing SOE methods and composite
sensing systems are summarized as follows.

1. Existing SOE methods have the following assumptions and constraints that are not
suitable for practical applications.

• The signal and noise statistics are known a priori [28, 29, 30, 32].

• The support is time-invariant [29, 34].

• The sparsity order is restricted [31, 32, 33].

2In weaker RIP, the `2 norm is replaced with `p norm where p ≈ 1
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• The algorithm parameters are dependent on sparsity order [35, 36, 37, 38, 39,
40, 43, 44].

• They are computationally intensive [30, 31, 34].

• They require separate measurements just for SOE [27, 28].

2. The construction of existing composite sensing systems is based on the knowledge
of sparsity order and statistics of noise and some of the obtained measurements are
not helpful for recovery.

Thus, there is a strong need to develop a composite sensing system and an SOE al-
gorithm suitable for both CS acquisition and recovery. Motivated by the purpose of SOE
and to overcome the aforementioned limitations of the existing SOE methods, there ex-
ists a need to develop an efficient and practically implementable CS measurement system
that performs a novel instantaneous SOE on the fly using the same set of measurements
acquired for use during recovery. The SOE method should be capable of estimating the
time-varying sparsity order and should not require any prior information regarding signal
and noise statistics. Considering these requirements, the research problem statement of this
thesis is formulated as follows.

1.10 Research problem statement

Problem 1.1. Model the CS acquisition system, CS recovery system, and time-varying
parameters of dynamic sparse and compressible signals.

Problem 1.2. Estimate the time-varying parameters from noisy measurements and derive
the performance bounds.

Problem 1.3. Apply the derived estimators for the recovery of real-world time-varying
sparse and compressible signals.

1.11 Research contributions of this thesis

The research contributions of this thesis towards solving the aforementioned problem state-
ment are summarized as follows.

1. A practical composite CS measurement system is developed with the help of a com-
posite sensing matrix constituted by a deterministic sparse Binary Sensing Matrix
(BSM) and a random dense Gaussian Sensing Matrix (GSM).
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2. Time-varying parameters such as (i) amplitudes of significant and insignificant com-
ponents are modeled using Gaussian random processes and (ii) sparsity order is mod-
eled using discrete Markov birth-death random process. The composite sensing sys-
tem, along with suitable statistical models for the time-varying parameters of sparse
and compressible signals, motivates the development of novel SOE algorithms and
maximises the recovery performance.

3. Two different approaches are devised for efficient SOE. The first approach performs
Maximum Likelihood (ML) estimation of the sparsity order using the GSM, followed
by ML Sequence (MLS) estimation using the Viterbi algorithm to refine the ML
estimates. The second approach performs ML estimation using the BSM, followed
by Kalman filtering to refine the ML estimates.

4. The proposed structure of BSM of composite sensing system provides initial esti-
mates about the supporting significant components. The BSM-aided support estima-
tion improves the speed of the greedy CS recovery algorithms by at least 25%.

5. The application of proposed composite sensing system, SOE algorithms and BSM-
aided recovery algorithm is demonstrated on compressing the real-world vibration
signals and estimation of CSI of communication systems.

22



Chapter 2

Modeling compressed sensing System

This chapter discusses a composite sensing system-based CS acquisition and its model. The
proposed CS acquisition system is illustrated in Figure 2.1, which comprises the follow-
ing elements: A compressible signal, B composite sensing system, C measurement
vector, D SOE system, and E measurement vector size (number of measurements) esti-
mator. A continuous-time compressible signal x(t) is acquired with the help of a composite
sensing system Θ that includes Gaussian and impulse basis functions (both of which are
modulated a priori using the inverse of the compressible signal’s representation basis). The
basis functions independently multiply the compressible signal and perform integration and
dumping every T seconds to generate the measurement vector y(nT ). Here, t represents
the continuous time index, nT represents the sampling time index, and n ∈ Z represents
the discrete time step. In the following, the sampling index nT is represented by n. Mea-
surement vector y(n) contains M(n) measurements. We know that an efficient CS system
obtains y(n) in such a way that the measurement vector size M(n) is the smallest neces-
sary for recovery. Because the sparsity order determines the measurement vector size, it is
estimated during the acquisition using BSM/GSM-based SOE techniques. An efficient CS
system does not use separate measurements just for SOE. Instead, it estimates the sparsity
order k(n) by using the same set of measurements obtained for recovery. However, before
obtaining the measurement vector y(n) using Equation (1.14), the measurement vector size
M(n) must be estimated based on the sparsity order k(n). Thus, it is practically impossi-
ble to simultaneously estimate the sparsity order and the measurement vector size for the
current time step n. Hence, the estimated sparsity order k̂(n) for the current time step n
is used to determine the number of measurements M(n + 1) for the next time step n + 1

because naturally occurring time-varying compressible signals are quasi-static and exhibit
a stronger temporal correlation.
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Figure 2.1: The block diagram of the proposed CS acquisition System.

2.1 Compressible signal model

Consider a continuous-time dynamic compressible signal x(t) with an N−dimensional
representation s(t) = {s1(t), s2(t), . . . , sN(t)} on an orthonormal sparsifying basis Ψ =

{ψ1(t), ψ2(t), . . . , ψN(t)} at tth time as follows:

x(t) =
N∑
j=1

sj(t)ψj(t) (2.1)

where sj(t) denotes the coefficient of the jth basis, ψj(t).
Using the basis Ψ given in Equation (2.1), the sparse representation s(t) has only k(t)

significant coefficients and the remaining are insignificant. The k(t) significant coeffi-
cients have magnitudes well above a specified threshold and contain most of the energy
of the compressible signal, thereby defining the sparsity order of the signal. The collec-
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tion of indices of these k(t) significant coefficients is the support set Ss(t). Any classi-
cal compression technique retains these k(t) significant coefficients and their support Ss(t)

and leaves the remaining N − k(t) insignificant coefficients to obtain signal sS(t) which
is a k(t)−sparse approximation of s(t). The error due to this approximation has energy
E{‖s(t) − sS(t)‖22} = (1 − Es)E{‖s(t)‖22}, where Es is user defined and is typically
≥ 0.95. This determines the threshold for distinguishing between significant and insignif-
icant coefficients. Thus, the representation s(t) can be written as the sum of two disjoint
signals, a k(t)−sparse signal sS(t), and an (N − k(t))−dense signal sε(t), i.e.,

s(t) = sS(t) + sε(t) (2.2)

where sS(t) contains k(t) nonzero significant coefficients and N − k(t) zeros, and sε(t)

contains N − k(t) nonzero insignificant coefficients and k(t) zeros.
Based on the compressible distributions given in [57], the insignificant coefficients are

approximated as i.i.d Gaussian noise such that sj(t) ∼ N (0, σ2
ε) when the jth coefficient

is insignificant. Considering that the entries of the significant components (sS)j:(j∈Ss) are
the outcomes of a Gaussian random variable, the mean value of significant components is
given by µs and the variance of the significant components is given by σ2

s .

2.2 Composite CS acquisition model

The CS acquisition model acquires x(t) for every T seconds to obtain anM(nT )−dimensional
discrete measurement vector y(nT ) using M(nT ) composite sensing basis functions Θ =

{θi(t)}Mi=1(nT ). An ith measurement yi(nT ) is obtained as given below:

yi(nT ) =

∫ nT

t=(n-1)T
θi(t)x(t)dt+ ϑi(nT ), 1 ≤ i ≤M(nT ) (2.3)

where a few of θi(t) are generated using sparse impulse basis functions and the rest are
with dense Gaussian basis functions and ϑi(nT ) ∼ N (0, σ2

ϑ) is the ith component of mea-
surement noise ϑ(t) and is generally modeled as i.i.d zero mean Gaussian noise [4].

The discrete versions of Equations (2.1), (2.2), and (2.3) are given as,

x(n) = Ψs(n), x(n) ∈ RN×1 (2.4)

s(n) = sS(n) + sε(n), s(n) ∈ RN×1 (2.5)

y(n) = Θx(n) + ϑ(n), y(n) ∈ RM×1 (2.6)
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where continuous time t is substituted with discrete time step n. The discrete compressible
signal x(n) = {xj(n)}Nj=1 has N samples in every time step of duration T seconds and
has a representation s(n) = {sj(n)}Nj=1 when projected onto an N ×N orthonormal signal
basis matrix Ψ. The discrete version of sensing basis is the M ×N−dimensional sensing
matrix Θ.

Substituting Equation (2.4) in Equation (2.6), the discrete CS acquisition model be-
comes,

y(n) = ΘΨs(n) + ϑ(n). (2.7)

The Θ considered is a composite matrix such that

Θ =

[
ΦBSMΨ−1

ΦGSMΨ−1

]
(2.8)

where ΦBSM is the MBSM × N−dimensional deterministic sparse BSM, ΦGSM is the
MGSM × N−dimensional random GSM, and M = MBSM + MGSM . The sparse BSM is
deterministic such that it is constructed by horizontally stacking the identity matrices. For
example, 4× 12 BSM is constructed by stacking three 4× 4 horizontally as given below.

1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1


︸ ︷︷ ︸

ΦBSM

The multiplication of BSM and GSM with inverse of sparsifying basis, i.e., Ψ−1 results in
the direct acquisition of s(n). Thus Equation (2.7) becomes,

y(n) =

[
yBSM

yGSM

]
(n) =

[
ΦBSM

ΦGSM

]
s(n) + ϑ(n) (2.9)

= Φs(n) + ϑ(n) (2.10)

where Φ =

[
ΦBSM

ΦGSM

]
.

Now substituting Equation (2.5) in Equation (2.10), the measurement vector model
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becomes,

y(n) = ΦsS(n) + Φsε(n) + ϑ(n), (2.11)

= yS(n) + yε(n) + ϑ(n) (2.12)

where yS(n) and yε(n) are the components of the measurement vector corresponding to the
significant and insignificant coefficients, respectively. The statistics of these components
are given as follows. The discrete time notation n is dropped for the sake of brevity in the
subsequent section.

2.3 Statistics of BSM measurements

Consider the sparse BSM having λ fraction of zeros in each row i.e.,

λ =
number of zeros in each row

N
= 1−

∑N
j=1 φi,j

N
.

2.3.1 Statistics due to significant components

Because the significant components are randomly distributed, it may be noted from Equa-
tion (2.12) that the ith BSM measurement (yS)i of yS is a random sum of significant coef-
ficients, i.e.,

(yS)i =
N∑
j=1

Φi,j(sS)j =
∑

j∈{SΦi

⋂
Ss}

(sS)j (2.13)

where SΦi
is the support set of ith row of ΦBSM and the set {SΦi

⋂
Ss} contains the indices

which are common to both the support sets SΦi
and Ss.

As each (sS)j:(j∈Ss) ∼ N (µs, σ
2
s) and (sS)j:(j /∈Ss)

= 0, every BSM measurement (yS)i

is a random sum of Gaussians and is approximated by

(yS)i ∼ N (`sµs, `s(σ
2
s + λµ2

s)) (2.14)

where `s = k(1−λ) is the average number of significant coefficients contributing to (yS)i.
The reason for `s = k(1 − λ), the mean of (yS)i as `sµs and the variance of (yS)i as

`s(σ
2
s + λµ2

s) are as follows.
The probability that an entry in each row of the BSM as 1 is (1−λ) and the probability

that a coefficient in s as significant is k/N . Thus, the probability that an index to be
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common to both support sets, SΦi
and Ss is (k/N)(1 − λ). Because there are N indices

in each row of the BSM, the average number of indices common to both support sets
SΦi

and Ss, i.e., the average number of significant coefficients that contribute to (yS)i is
`s = N(k/N)(1− λ) = k(1− λ). In other words, because each measurement is a random
sum of the significant components, the probability of selecting ` significant components
from k significant components is binomially distributed with the probability of success in
choosing a significant component as 1−λ. Hence, the mean of the binomial distribution is
the average number of significant coefficients, i.e., E{`} = `s = k(1− λ) and the variance
of the binomial distribution is k(1− λ)λ.

The average number of significant coefficients is shown empirically by performing a
simulation where the BSM was constructed with λ = 0.95, M = 2500, N = 5000 and
a binary sparse signal was generated with sparsity order k = 200, i.e., there were 200

nonzero components and all of these components sj:(j∈Ss) = 1 with their support is ran-
domly distributed. The histogram of (yS)i corresponding to the significant components is
shown in Figure 2.2 which shows that E{(yS)i} = 1

M

∑M
i=1(yS)i = `s = k(1− λ) = 10 is

the average and has the highest probability.
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Figure 2.2: Empirical results on the number of significant coefficients contribution and its
frequency of occurrences from the BSM-based measurements showing that each measure-
ment contains an average number of significant coefficients as E{(yS)i} = `s = k(1−λ) =
200(1− 0.95) = 10.

As there are k(1− λ) average significant coefficients and each significant coefficient’s
mean is µs, the mean of each measurement is E{(yS)i} = k(1− λ)µs.

Equation (2.13) is the random sum of random variables. The random sum is due to the
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randomness in ` out of k significant coefficients, and the random variables are significant
coefficients. Hence, the variance of the random sum of random variables is given as

Var{(yS)i} = E{`}Var{sj}+ Var{`}(E{sj})2

= k(1− λ)σ2
s + k(1− λ)λµ2

s

= k(1− λ)(σ2
s + λµ2

s)

= `s(σ
2
s + λµ2

s).

2.3.2 Statistics due to insignificant components

Similar to (yS)i, the ith BSM measurement (yε)i of yε is a random sum of i.i.d insignificant
coefficients, i.e.,

(yε)i =
N∑
j=1

Φi,j(sε)j =
∑

j∈{SΦi

⋂
Sε}

(sε)j (2.15)

where Sε is the support set of insignificant coefficients and the set {SΦi

⋂
Sε} contains the

indices which are common to both the support sets SΦi
and Sε.

From Equation (2.15), the ith BSM measurement corresponding to insignificant coeffi-
cients is,

(yε)i ∼ N (0, `εσ
2
ε ) (2.16)

where `ε = (N−k)(1−λ) is the average number of insignificant coefficients that contribute
to (yε)i. The result for `ε was verified empirically by performing a simulation using the
same setup as that discussed for the empirical verification of `s. Here, the binary sparse
signal is a complement to the previous one, i.e., (sε)j:(j∈Sε) = 1 and (sε)j:(j /∈Sε) = 0.
The histogram of (yε)i corresponding to insignificant coefficients contribution is shown
in Figure 2.3 which shows that E{(yε)i} = 1

M

∑M
i=1(yε)i = `e = (N − k)(1 − λ) =

(5000− 200)(1− 0.95) = 240 is the average and has the highest probability.
By combining Equations (2.14) and (2.16) with that of measurement noise, each com-

ponent yi of the BSM measurement vector yBSM is

yi ∼ N (`sµs, `s(σ
2
s + λµ2

s) + `εσ
2
ε + σ2

ϑ). (2.17)

Here, the statistics µs and σ2
s are unknown a priori. Using the thresholding factor Es

to separate the significant and insignificant coefficients, an estimate of σ2
ε based on the
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Figure 2.3: Empirical results on the number of insignificant coefficients contribution and
its frequency of occurrences from the BSM-based measurements showing that each mea-
surement contains an average number of insignificant coefficients as E{(yε)i} = `ε =
(N − k)(1− λ) = (5000− 200)(1− 0.95) = 240.

concentration of measure is

MBSM(N − k)(1− λ)σ2
ε ≈ (1− Es)||ΦBSMs||22.

=⇒ σ2
ε ≈

(1− Es)(
∑MBSM

i=1 y2i −MBSM σ̂2
ϑ)

MBSM(N − k)(1− λ)

≈ (1− Es)(
∑MBSM

i=1 y2i −MBSM σ̂2
ϑ)

MBSMN(1− λ)
(as N � k).

It can be noted that an estimate σ̂2
ϑ of measurement noise is available either during cali-

bration by acquiring measurements in the absence of any signal or using Particle Swarm
Optimisation (PSO) [58] method.

2.4 Statistics of GSM measurements

Each GSM measurement yi is given by yi =
∑

j φi,jsj + ϑi. Since each φi,j ∼ N (0, σ2
φ) ∈

ΦGSM is i.i.d Gaussian and independent of sj , the mean E{yi} and variance VAR{yi} of
the GSM-based measurements are computed as follows.
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E{yi} = E{
∑
j∈Ss

φi,j(sS)j}+ E{
∑
j∈Sε

φi,j(sε)j}+ E{ϑi}

=
∑
j∈Ss

E{φi,j(sS)j}+ E{
∑
j∈Sε

φi,j(sε)j} (as E{ϑi} = 0)

=
∑
j∈Ss

E{φi,j}E{(sS)j}+
∑
j∈Sε

E{φi,j}E{(sε)j} ( applying the independence property)

= 0. (as E{φi,j} = 0)

VAR{yi} =
∑
j∈Ss

VAR{φi,j(sS)j}+
∑
j∈Sε

VAR{φi,j(sε)j}+ σ2
ϑ

(by applying independence property)

=
∑
j∈Ss

(E{φi,j})2VAR{(sS)j}+ (E{(sS)j})2VAR{φi,j}+

VAR{(sS)j}VAR{φi,j}

+
∑
j∈Sε

(E{φi,j})2VAR{(sε)j}+ (E{(sε)j})2VAR{φi,j}+

VAR{(sε)j}VAR{φi,j}

+σ2
ϑ

=
∑
j∈Ss

(0 + µ2
sσ

2
φ + σ2

sσ
2
φ)

+
∑
j∈Sε

(0 + 0 + σ2
εσ

2
φ)

+σ2
ϑ (as E{φi,j} = 0 and E{(sε)j})

=
∑
j∈Ss

σ2
φ(µ2

s + σ2
s) +

∑
j∈Sε

σ2
φσ

2
ε + σ2

ϑ

= kσ2
φ(µ2

s + σ2
s) + (N − k)σ2

φσ
2
ε + σ2

ϑ

= kσ2
φ(µ2

s + σ2
s − σ2

ε ) +Nσ2
φσ

2
ε + σ2

ϑ.

Thus, the mean and variance of each measurement are given as,

E{yi} = 0 and (2.18)

VAR{yi} = kσ2
φ(µ2

s + σ2
s − σ2

ε ) +Nσ2
φσ

2
ε + σ2

ϑ. (2.19)
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2.5 Modeling time-varying sparsity order

Any real-world signal has time-varying support owing to the inclusions (births) and dele-
tions (deaths) of the signal basis functions, as shown in Figure 2.4. The support spectrum
of the vibration signal of an aircraft [59] is shown in this figure. The figure depicts a sparse
representation of the vibration signal in the DCT domain. The figure captures the time evo-
lution of the active cosine harmonics basis functions of the DCT, as shown in the different
colored tracks. Here, it may be noted that there are (i) clusters of active basis functions
centered on certain resonant frequencies, as shown in the highlighted portion of the plot,
(ii) large spectral gaps between these clusters that reveal sparsity in the DCT domain, and
(iii) inclusions and deletions of the basis functions with time, as revealed by the discon-
tinuous lines. Thus, the birth and death of basis functions result in the variation of support
and its cardinality, i.e., the sparsity order k.
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Figure 2.4: Time-varying support of a real-world vibration signal.

Let the dynamic signal x(n) be represented as

x(n) = Ψ{K(n)sS(n) + Kc(n)sε(n)}

where

• K(n) =diag(κ(n)) is the support representation matrix for significant components,

• κ(n) = {κj(n)}Nj=1 is i.i.d N−dimensional vector,

• κj(n) ∼ Bernoulli-p, q such that Pr[κj(n) = 1] = p and Pr[κj(n) = 0] = q = 1−p,
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• Kc(n) =diag(κc(n)) is the support representation matrix for the insignificant com-
ponents,

• κc(n) = {κcj(n)}Nj=1 is the i.i.d N− dimensional vector, and

• κcj(n) is complement to κj(n) such that Pr[κcj(n) = 1] = q and Pr[κcj(n) = 0] =

p = 1− q.

• There is a temporal structure imposed on the model, which will be discussed in detail
below.

The variation in the support is modeled by appropriately changing the entries of the Bernoulli
vector κ(n). The value of the difference d = (κj(n) − κj(n-1)) represents the birth, or
death, or survival of the jth component, depending on whether it is +1, or−1, or 0, respec-
tively. Owing to this difference, the sparsity order k at the nth time step is a generalized
discrete Markov birth-death process and is given as

k(n) = k(n-1) +
N∑
j=1

(κj(n)− κj(n-1))︸ ︷︷ ︸
sparsity order variation

. (2.20)

The following parameters specify the discrete Markov birth-death process model of sparsity
order variation.

• State space S : S is a finite or countable set of states, that is, values that the sparsity
order k(n) may take on. As 1 ≤ k(n) ≤ N , the state space S = {1, 2, 3, .., N}.

• Probability transition rule P : This is specified by giving a transition matrix P =

[pi,j] : pi,j = pd = pj−i = Pr{k(n) = j|k(n-1) = i}. As S is the finite set, P is an
N × N matrix. The interpretation of the number pi,j is the conditional probability,
given that k(n) is in state i at time step n-1 jumps to the state j at time step n.

In the probability Pr{k(n) = j|k(n-1) = i}, (i) when i < j, the probability indi-
cates birth probability, (ii) when i > j the probability indicates death probability, and (iii)
when i = j, the probability indicates survival probability. In other words, the probabilities
Pr{k(n) = j|k(n-1) = i} = pi,j = Pr[(k(n) − k(n-1)) = j − i = d] = pd : d >

0, d < 0, and d = 0 are associated with the birth, death, and survival of supporting com-
ponents. In particular, the probability that the sparsity order remains unchanged between
two time steps, p(d=0) = p0 determines the degree of sparsity order variation. It shall be
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noted that there are conditions such that though the sparsity order remains unchanged i.e.,
k(n) = k(n − 1), there can be complete change in the support. For example, suppose
support is {1, 2} at (n − 1)th time step changes to {3, 4} at nth time step where sparsity
order remains unchanged, i.e., k(n−1) = k(n) = 2. Such conditions are undesirable here.

The sparsity order variations can be slow, moderate, fast, or rapid. The sparse signals
exhibit slow and gradual variations in the sparsity order under steady-state conditions and
rapid variations during transients and bursty behavior. The idea of survival time L̃ is in-
troduced here to statistically quantify the degree and duration of invariance of the sparsity
order in time akin to similar concepts in the context of modeling time-varying wireless
channels in digital communications.

Definition 2.1. The survival time L̃ is the statistical average number of time steps for which
the sparsity order is practically time-invariant, and is given by Equation (2.21).

As the probability that the sparsity order remains unchanged for l time steps is pl0(1 −
p0), the average time steps for which the sparsity order remains unchanged is p0/(1− p0).
Thus, the survival time L̃ is

L̃ =

⌊
p0

1− p0

⌉
. (2.21)

Intuitively, a longer survival time indicates slow variation and a shorter survival time indi-
cates rapid variation in the sparsity order. For example, in this research work, the sparsity
order variation is classified as (i) slow when 0.9 < p0 < 1 (L̃ > 9), (ii) moderate when
0.8 < p0 ≤ 0.9 (4 < L̃ ≤ 9), (iii) fast when 0.6 < p0 ≤ 0.8 (2 < L̃ ≤ 5), and (iv) rapid
when p0 ≤ 0.6 (L̃ ≤ 2), respectively. An example of a simulation of time-varying sparsity
order k(n) for four different values of p0 is shown in Figure 2.5. It can be seen that, as p0
decreases, the survival time L̃ becomes smaller, and the rate of change of sparsity order in-
creases, i.e., when (i) p0 = 0.98{L̃ = 49}, (ii) p0 = 0.9{L̃ = 9}, (iii) p0 = 0.75{L̃ = 3},
and (iv) p0 = 0.5{L̃ = 1}, the sparsity order variations are slow, moderate, fast, and rapid,
respectively. This birth-death model is similar to the model given for time-varying sparse
CSI for wireless channels in [60, 61, 62, 63].

2.5.1 Algorithm for simulating the time-varying sparse order

An algorithm used for simulating a discrete Markov birth-death process characterizing the
time-varying sparsity order is given as follows.
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Figure 2.5: Simulation of time-varying sparsity order using Markov birth-death process.

Algorithm 3 Simulating the time-varying sparsity order
Input:

• Discrete time step n = 0

• Sparsity order variation probability matrix P = [pi,j] : pi,j = pd = pj−i =
Pr{k(n) = j|k(n− 1) = i}
• Initial value of sparsity order k(0)

1: n = n+ 1
2: i = k(n− 1)
3: Take a sample u from an uniform distribution U(0, 1)
4: k(n) = j if

∑j
l=1 pi,l < u ≤

∑j+1
z=1 pi,z

5: go to step 1
Output: Sparsity order: k(n).

2.6 Summary

In this chapter, the models for (i) time-varying parameters: support, sparsity order, and
amplitude of the compressible signal, (ii) sensing system, and (iii) the statistics of mea-
surements are discussed.
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Chapter 3

Maximum likelihood sparsity order esti-
mation

In this chapter, estimators to estimate the instantaneous sparsity order on the fly are derived
using the Maximum Likelihood (ML) principle when the measurements are obtained using
the composite BSM and GSM. The derived estimators do not require any prior information
on the compressible signal, and they perform SOE from the BSM and GSM-based mea-
surements. The derivation of BSM-based SOE (BSOE) and GSM-based SOE (GSOE) and
their properties are discussed here.

3.1 BSM-based SOE

In this section, the ML estimator for the sparsity order is derived from the statistical prop-
erties of the sparse representation s and the BSM-based measurement vector yBSM .

As each row of the sparse BSM has very few ones compared to the number of zeros,
there exists a finite probability of obtaining measurements that have contributions only
from insignificant coefficients and measurement noise. This finite probability is exploited
here for estimating the sparsity order of the underlying compressible signal.

As discussed in Chapter 2, the compressible signal has a sparse representation s(n)

and can be written as the sum of two disjoint signals, a k(n)−sparse signal sS(n), and an
(N − k(n))−dense signal sε(n), i.e.,

s(n) = sS(n) + sε(n) (3.1)

where sS(n) is a N−dimensional vector containing k(n) nonzero significant coefficients
and N − k(n) zeros, and sε(n) is another N−dimensional vector containing N − k(n)
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nonzero insignificant coefficients and k(n) zeros. For the sake of brevity, the discrete-time
notation n is omitted here after. Using the BSM, the measurement vector

yBSM = ΦBSMsS + ΦBSMsε + ϑBSM

= (yBSM)S + (yBSM)ε + ϑBSM .

The vector yBSM = {yi}MBSM
i=1 is composed of components (yBSM)S = {(yS)i}MBSM

i=1

because of significant coefficients, (yBSM)ε = {(yε)i}MBSM
i=1 because of insignificant coef-

ficients, and ϑBSM = {ϑi}MBSM
i=1 because of the measurement noise. Thus, the ith mea-

surement yi is given as
yi = (yS)i + (yε)i + ϑi. (3.2)

An example illustrating the measurements obtained using BSM is shown below.


y1

y2

y3

y4


︸ ︷︷ ︸
yBSM

=


1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1


︸ ︷︷ ︸

ΦBSM



(sS)1

(sε)2

(sε)3

(sS)4

(sS)5

(sε)6

(sε)7

(sε)8


︸ ︷︷ ︸

sparse representation: s

+


ϑ1

ϑ2

ϑ3

ϑ4


︸ ︷︷ ︸

Measurement noise: ϑBSM

=


(sS)1 + (sS)5

0

0

(sS)4


︸ ︷︷ ︸

(yBSM )S

+


0

(sε)2 + (sε)6
(sε)3 + (sε)7

(sε)8


︸ ︷︷ ︸

(yBSM )ε

+


ϑ1

ϑ2

ϑ3

ϑ4


︸ ︷︷ ︸
ϑBSM

=


(sS)1 + (sS)5 + ϑ1

(sε)2 + (sε)6 + ϑ2

(sε)3 + (sε)7 + ϑ3

(sS)4 + (sε)8 + ϑ4

 .

In the above example, a compressible signal of dimension N = 8 has a sparse rep-
resentation s with sparsity order k = 3 and support S = {1, 4, 5}. The BSM ΦBSM of
dimension M ×N = 4× 8 is constructed by horizontally stacking two identity matrices of
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dimension 4× 4. The measurement yBSM = {y1, y2, y3, y4} has dimension M = 4. It can
be observed that measurements y1 and y4 have contributions from significant coefficients,
whereas measurements y2 and y3 are devoid of significant coefficients. Thus, each mea-
surement is a random sum of the significant and insignificant coefficients along with the
measurement noise.

Because the BSM is sparse, there exists a probability that yi is devoid of significant
coefficients, i.e., the probability that {(yS)i} = 0 resulting in yi = (yε)i + ϑi can be used
for the SOE. For a better understanding of the SOE using this probability, initially, true
sparse signals under noiseless settings are considered, and then compressible signals with
noise settings are considered.

3.1.1 Case 1: True sparse signals under noiseless settings

For true sparse signals, the insignificant coefficients are zeros. In other words, sε = 0

resulting in s = sS . Assuming zero measurement noise, any measurement yi obtained using
BSM is a random sum of the significant coefficients of s. There exists a finite probability
that yi = (ΦBSM)is = 0, i.e., the zeros of both the ith BSM row (ΦBSM)i and the sparse
representation s mutually multiply with the nonzero entries of other vector resulting in zero-
valued measurements. The probability P0 of obtaining such zero-valued measurements can
be used to estimate the sparsity order k for true sparse signals.

The following theorem derives the sparsity order estimator K̂BSOE for true sparse sig-
nals acquired under noiseless conditions.

Theorem 3.1. The BSOE technique (True Sparse Signals): Consider a sparse random BSM

ΦBSM = [φi,j] : φi,j ∼ B(0, λ), which obtains measurements y = {yi}MBSM
i=1 . Then, the

sparsity order estimator K̂BSOE using the BSOE technique for any true k−sparse signal

is given by K̂BSOE =
⌊
log(P̂0)/log (λ)

⌉
, where P̂0 =

∑MBSM

i=1 (δ0(yi))/MBSM is the esti-

mated probability of obtaining a zero-valued measurement and δ0(yi) =

1, if yi(n) = 0;

0, otherwise.

Proof. Let SΦi
be the support of the ith row of a sparse BSM ΦBSM and Ss be the support

of the sparse representation s. If the number of elements in the support Ss is k, then the
probability P` that both support sets SΦi

and Ss to have ` common elements, is binomial
distributed, and is given as

P` =

(
k

`

)
(1− λ)`(λ)(k−`) (3.3)
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where 0 ≤ ` ≤ k. As P` is a function of k, λ, and `, an estimate of k can be obtained using
the same. When the support sets SΦi

and Ss do not have a common element, i.e., ` = 0,
Equation (3.3) reduces to,

P0 = λk (3.4)

which provides the probability of having nonoverlapping sets SΦi
and Ss, resulting in a

zero-valued measurement. Using Equation (3.4), the sparsity order k can be derived as

k =
log(P0)

log(λ)
. (3.5)

Thus, a simple sparsity order estimator K̂BSOE is obtained by estimating the probability
P0. The probability P0 is Maximum Likelihood (ML) estimated as the proportion of zero-
valued measurements yi in a total of MBSM measurements as follows.

3.1.1.1 ML estimate of P0

The probability for obtaining M0 measurements devoid of significant coefficients out of
MBSM measurements is Binomial distributed, i.e., the likelihood function is given as

Pr[M0] =

(
MBSM

M0

)
(P0)

M0(1− P0)
MBSM−M0 . (3.6)

Taking logarithm for Equation (3.6), the log-likelihood function is,

log{Pr[M0]} = log{
(
MBSM

M0

)
}+M0 log{(P0)}+ (MBSM −M0) log{(1− P0)} (3.7)

The maximum likelihood of P0 is obtained by taking first order derivative of Equa-
tion (3.7) with respect to P0 and equating to 0, i.e.,

∂ log{Pr[M0]}
∂P0

=
M0

P0

− MBSM −M0

1− P0

= 0, (3.8)

which provides

P0 =
M0

MBSM

. (3.9)

Here M0 =
∑

i=1 (δ0(yi)). Thus the ML estimate of P0 is given as

P̂0 =

∑MBSM

i=1 (δ0(yi))

MBSM

. (3.10)
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Substituting P̂0 into Equation (3.5) and rounding it to the nearest integer, the sparsity
order estimator K̂BSOE is

K̂BSOE =

⌊
log(P̂0)

log (λ)

⌉
=

 log

(∑MBSM
i=1 (δ0(yi))

MBSM

)
log (λ)

 . (3.11)

3.1.2 Case 2: compressible signals under noise settings

The procedure for obtaining the sparsity order estimator for compressible signals is sim-
ilar to the procedure discussed above for true sparse signals with certain changes in the
computation of the probability P0.

For compressible signals in the presence of additive noise, both sε and ϑ are nonzeroes.
Thus the non-overlapping sets SΦi

and Ss result in measurements without contributions
from the significant coefficients, i.e., yi = (yε)i + ϑi 6= 0 and here P0 is the probability
of obtaining such a measurement devoid of contributions from the significant coefficients,
which is the same as given in Equation (3.4), i.e.,

P0 = Pr [yi = (yε)i + ϑi]︸ ︷︷ ︸
devoid of significant components

= λk. (3.12)

As (yε)i and ϑi are zero-mean Gaussian distributed, P0 corresponds to the probability
of obtaining measurements lying in a bounded interval from −τ to τ centered around the
origin. When yi is devoid of significant coefficients, i.e., when all the 1’s in the ith row
span only insignificant components, the variance of yi is equal to the variance of N(1− λ)

insignificant components, i.e., N(1 − λ)σ2
ε added with measurement noise variance σ2

ϑ.
Hence, yi has a Gaussian pdf whose variance is N(1−λ)σ2

ε +σ2
ϑ. The 99% area of this pdf

is bounded by yi such that −3
√
N(1− λ)σ2

ε + σ2
ϑ ≤ yi ≤ 3

√
N(1− λ)σ2

ε + σ2
ϑ. Hence,

the bounding threshold τ is set to be, τ = 3
√
N(1− λ)σ2

ε + σ2
ϑ.

Thus, the probability P0 is

P0 = Pr [yi = (yε)i + ϑi] = Pr [|yi| ≤ τ ] ,

which is estimated as the proportion of measurements having magnitude less than the
threshold τ , out of MBSM measurements. However, there is a possibility that two or more
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of the significant coefficients may also be present in the sum yi, yet satisfying the above
condition, i.e., |yi = (ys)i + (yε)i +ϑi| ≤ τ and are akin to having false alarms in detection
problems. Such conditions result in biased estimates of P0 with an upward bias. Therefore,
it is necessary to subtract the probability q of having two or more significant coefficients,
whose sum is insignificant. Therefore,

Pr [|yi| ≤ τ ] = Pr [|(yε)i + ϑi| ≤ τ ]︸ ︷︷ ︸
P0:insignificant + noise

+Pr [|(ys)i + (yε)i + ϑi| ≤ τ ]︸ ︷︷ ︸
q:significant+insignificant+noise

where the estimate of Pr [|yi| ≤ τ ] is
∑MBSM
i=1 δτ (yi)

MBSM
and δτ (yi) =

1, if |yi(n)| ≤ τ

0, otherwise.
Thus,

P̂0 =

∑MBSM

i=1 δτ (yi)

MBSM

− q̂. (3.13)

The BSOE technique estimates q on the fly by estimating the statistics of the significant
coefficients from the measurement statistics. The estimate of q is given by Equation (3.17).

Extending Theorem 3.1, the BSOE technique for compressible signals is given by

Theorem 3.2. The BSOE technique (Compressible Signals): The sparsity order estimator

K̂BSOE for compressible signals is

K̂BSOE =

 log

(∑MBSM
i=1 δτ (yi)

MBSM
− q̂
)

log(λ)

 . (3.14)

The claim of the Theorem 3.2 is that the estimator K̂BSOE is obtained using the BSM
measurements and the false alarm probability q. As the computation of false alarm prob-
ability depends on the knowledge of statistics of compressible signal, it is explained as
follows.

Because each y is a random sum consisting of any ` < k significant coefficients, to
determine q, first the probability q`,k for the presence of ` significant coefficients in the
sum is considered. Then, the probability q`,y that such a sum is bounded by threshold τ is
evaluated. Finally, combining the above probabilities and repeating the same for all values
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of ` from 2 through N(1− λ) yields the desired probability q, i.e.,

q`,k =

(
k

`

)
(1− λ)`(λ)(k−`) (3.15)

q`,y =

∫ τ

−τ
pY`(y`)dy` (3.16)

q =

N(1−λ)∑
`=2

q`,kq`,y (3.17)

where pY`(y`) is the probability density function (pdf) of a measurement, given by

pY`(y`) ∼ N (`µs, `σ
2
s + (N(1− λ)− `)σ2

ε + σ2
ϑ). (3.18)

Probability q`,y depends on the statistics µs and σ2
s which are functions of k. Thus, both q`,k

and q`,y are functions of k whose estimation is the objective of this research work. That is,
to estimate k, an estimate of q is required, but q depends on k. To address this yet another
chicken and egg problem, q`,k can be precomputed for all values of ` and k from 0 to kmax.
In the case of q`,y, the evaluation of the integrals of the type given in Equation (3.16) can be
performed using the Mclaurin expansion for the same and computing them to the desired
level of accuracy.

Considering the pdf given in Equation (3.18), the problem of estimating q turns out to
be an optimization problem such that, given the measurement vector y, what would be the
optimum pair of {k, µs, σ2

s} which yields the probability P0. Hence, a method for the joint
estimation of the optimum pair from the obtained measurements is discussed as follows.

3.1.3 Joint estimation of statistics of significant coefficients and spar-
sity order

The estimates of µs and σ2
s of the significant coefficients in Equation (2.17) are given below.

µ̂s =
µ̂y

k̂(1− λ)

σ̂2
s =

σ̂2
y −

(
(N − k̂)(1− λ)σ̂2

ε + σ̂2
ϑ

)
k̂(1− λ)

+ λµ̂2
s
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where k̂ = k̂BSOE is the estimated sparsity order obtained from the BSOE estimator, and

µ̂y =

∑MBSM

i=1 yi
MBSM

σ̂2
y =

∑MBSM

i=1 (yi − µ̂y)2

MBSM

are the sample mean and variance of the measurements, respectively.
A recursive feedback technique is proposed for the joint estimation of sparsity order

and statistics of the significant coefficients from the obtained measurements. To start with,
if one considers q̂ = 0 in Equation (3.14), then k̂ < k resulting in µ̂s > µs as well as
σ̂2
s > σ2

s . Subsequently, q̂ < q and substituting it in Equation (3.14) decreases the estimate
of P0, leading to an increase in the estimate k̂ and a reduction in the estimate of statistics
in the next iteration. This process continues until the false alarm probability estimate q̂
converges. Thus, in every iteration, the estimate k̂ is updated by approaching the true
value. The BSOE procedure is summarized and given in Algorithm 4.

3.1.4 Experimental evaluation of convergence of recursive feedback
technique

A simulation was performed to show the convergence of the estimates of the statistics µ̂s
and σ̂2

s and the sparsity order k̂. In the simulation, the sparsity order was kept constant
at k = 200 and five realizations of a compressible signal of dimension N = 2500 were
generated such that the average mean and variance of the significant coefficients were µs =

1 and σ2
s = 25, respectively, and the mean and variance of each insignificant coefficient

were µε = 0 and σ2
ε = 0.2, respectively. For each realization, different support was chosen.

The sparsity order of BSM isN(1−λ) = 20. For each realization,M = 130 measurements
were obtained. The measurement noise ϑBSM was chosen such that the Signal to Noise
Ratio (SNR) was 10 dB. The SNR is given as,

SNR = 10 log10

‖ΦBSMs‖22
‖ϑBSM‖22

. (3.19)

The convergence of the mean, variance, and sparsity order estimates are illustrated in Fig-
ures 3.1 (a), 3.1 (b), and 3.1 (c), respectively. It is observed that the initial sparsity order
estimate is less than the true value, and the initial estimate of the mean and variance of
the significant coefficients is greater than the true value in all five realizations. In addi-
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Algorithm 4 Estimation of sparsity order from BSM-based measurements
Input: Measurements y : {y1, y2, .., yMBSM

}, user-defined threshold Es, measurement
noise variance estimate σ̂2

ϑ.

1. Estimate the variance of insignificant coefficients:

• σ̂2
ε = (1− Es)

∑MBSM

i=1

y2i−MBSM σ̂
2
ϑ

MBSMN(1−λ) , Threshold τ = 3
√
N(1− λ)σ2

ε + σ2
ϑ.

2. Estimate the sample mean and variance of the measurements:

µ̂y =

∑MBSM

i=1 yi
MBSM

; σ̂2
y =

∑MBSM

i=1 (yi − µ̂y)2

MBSM − 1
.

3. Estimate the probability P0 by calculating the number of measurements such that

|yi| ≤ τ i.e., P̂0 =
∑MBSM
i=1 δτ (yi)

MBSM
where δτ (yi) =

{
1, if |yi| ≤ τ

0, otherwise.

4. Compute the initial estimate of sparsity order using BSM: K̂BSOE = k̂ =⌊
log(P̂0)/ log(λ)

⌉
.

5. Iterative computation:

5.1 Estimate the statistics of significant coefficients:

µ̂s =
µ̂y

k̂(1− λ)
; σ̂2

s =
σ̂2
y −

(
(N − k̂)(1− λ)σ̂2

ε + σ̂2
ϑ

)
k̂(1− λ)

+ λµ̂2
s.

5.2 Estimate the probability q:

– q̂ =
∑N(1−λ)

`=2 q`,kq`,y where q`,k =
(
k̂(n)
`

)
(1 − λ)`(λ)(k̂−`) and q`,y =∫ τ

−τ pY (yi)dyi.
– The probability q`,k can be precomputed and made available in a lookup table
– The computation of q`,y can be done using the Mclaurin expansion in real time.

5.3 Compute P̂0 =
∑MBSM
i=1 δτ (yi)

MBSM
− q̂.

5.4 Update the sparsity order estimate, k̂BSOE = k̂ =
⌊
log(P̂0)
log(λ)

⌉
;

5.5 Go to 5.1 until k̂BSOE converges.

End iteration.

Output: BSM-based estimate of sparsity order: k̂BSOE .
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tion, the convergence of the recursive feedback technique occurred after a maximum of
five iterations.

3.1.5 Estimation performance of BSOE

A simulation was run to assess the BSOE’s performance in terms of estimation accuracy
when estimating the statistics of the significant coefficients and the sparsity order. The
following are the estimation accuracy measures:

• Relative Mean Estimation Error (RMEE) = |µs−µ̂s||µs|

• Relative Variance Estimation Error (RVEE) = |σ
2
s−σ̂2

s |
σ2
s

• Sparsity Order Estimation Error (SOEE) = |k−k̂BSOE |
k

The true mean, variance, and sparsity order of the compressible signal dimension N =

2500 were set to µs = 1, σ2
s = 25, and k = 200. The SNR was varied in 2 dB steps from

0 to 16 dB. For each SNR value, there were 500 realizations. In each realization, different
support was chosen, and the parameters µs, σ2

s , and k were estimated. The RMEE, RVEE,
and SOEE were computed for each realization, and the averaged results for 500 realizations
are shown in Figure 3.2. It is observed that the relative error is less than 15% for SNR values
above 5 dB, and the performance of BSOE improves with increasing SNR values.

3.1.6 Properties of the estimator k̂BSOE

Using Equation (3.9),

E{P̂0} = µP̂0
=

E{M0}
MBSM

=
MBSMP0

MBSM

(since E{M̂0} = MBSMP0)

= P0.

Thus the ML estimate P̂0 is an unbiased estimate. Now applying functional invariance
property, the transformation to

⌊
log(P̂0)/ log(λ)

⌉
= k̂ is also an ML estimate. As MBSM

approaches infinity, the estimate k̂ = k and the estimator K̂BSOE is asymptotically consis-
tent.
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Using Taylor series approximation,

VAR{log(P̂0)} ≈
σ2
P̂0

µ2
P̂0

1, (3.20)

VAR{K̂BSOE} ≈
1

(log(λ))2

σ2
P̂0

µ2
P̂0

. (3.21)

The mean µP̂0
and variance σ2

P̂0
of P̂0 are computed using Equation (3.6) and are given by,

µP̂0
= λk, σ2

P̂0
=
λk(1− λk)
MBSM

. (3.22)

Substituting µP̂0
and σ2

P̂0
in Equation (3.21), the variance of K̂BSOE is,

VAR{K̂BSOE} ≈
1− λk

MBSMλk(log(λ))2
. (3.23)

1For some continuous and differentiable function g(P̂0), Taylor series approximation to the variance of

g(P̂0) is, VAR{g(P̂0)} ≈
(

∂g

∂P̂0
(µP̂0

)
)2
σ2
P̂0

where µP̂0
and σ2

P̂0
are the mean and variance of P̂0, respec-

tively.
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3.2 Optimum value of λ for minimizing the variance of
sparsity order estimator

Parameter λ defines the sparsity order of BSM. This is crucial because it determines the
SOE and recovery performances. From Equation (3.23), it is observed that VAR{K̂BSOE}
is a function of λ and the optimum value of λ to minimize VAR{K̂BSOE} is computed as
follows:

∂VAR{K̂BSOE}
∂λ

=
λk − k

2
(log(λ))− 1

MBSM

2
λk+1(log(λ))3

= 0

which implies

λk − k

2
(log(λ))− 1 = 0. (3.24)

Upon simplification, using the fact that λ ≈ 1, Equation (3.24) becomes

λ ≈ exp(−1.6/k). (3.25)

From Equation (3.25), it is observed that the optimum value of λ differs for different
k(n). Table 3.1 provides the optimum value of λ and the minimum variance value of
K̂BSOE for different k.

k λ VAR{K̂BSOE}
100 0.984 38.607
150 0.989 57.962
200 0.992 77.210
250 0.994 96.693
300 0.995 116.036
350 0.995 135.887
400 0.996 154.417

Table 3.1: Optimum value of λ in minimizing the variance of the sparsity order estimate
K̂BSOE . It is observed that as the sparsity order k increases, the BSM’s optimal sparsity
parameter λ increases making the BSM too sparse to reduce the variance of SOE.

It is observed that λ must be increased as k increases, i.e., the BSM must be made very
sparse to achieve a minimum variance of K̂BSOE . However, as the parameter λ increases,
the recovery performance of the BSM degrades as the number of measurements spanning
the significant coefficients decreases. Observe from Equation (2.12) that each measurement
yi(n) is a sum of the random sums of the significant and insignificant coefficients, and
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noise. As λ approaches one, the number of ones in each row is reduced to zero, resulting
in more measurements with contributions from insignificant coefficients and noise alone
with a high probability, satisfying |yi(n)| ≤ 3

√
N(1− λ)σ2

ε + σ2
ϑ which is a condition

required for a better SOE. However, at the same time, such measurements are not helpful for
recovery as they do not have any contributions from significant coefficients. The remaining
measurements with contributions from significant coefficients are helpful only for recovery.
Thus, there is a trade-off between SOE and recovery, i.e., the sparser the BSM, the better the
SOE; however, the poorer the recovery, as the BSM is poor in satisfying the RIP. Hence,
with a limited number of BSM measurements, recovery of compressible signals is not
possible. Hence, composite sensing matrices composed of GSM are used along with BSM
for better SOE and recovery. The SOE technique using GSM is discussed in the next
section.

3.3 GSM-based SOE

From the statistical properties of sparse representation and GSM-based measurement vec-
tor, the following theorem defines the GSM-based estimator, which is an ML estimator for
the sparsity order.

Theorem 3.3. The GSOE technique: Let y = ΦGSMs + ϑ be the GSM-based CS acqui-

sition model that obtains MGSM measurements, where

• ΦGSM = {φi,j}MGSM
i=1 ,Nj=1 is the CS acquisition matrix containing i.i.d entries such

that φi,j ∼ N (0, σ2
φ),

• s = {sj}Nj=1 is the k−sparse representation of the compressible signal such that the

insignificant coefficients are approximated as zero mean i.i.d. Gaussian noise with

variance σ2
ε) and the mean and variance of the significant coefficients are given as

µs and σ2
s , respectively, and

• ϑ = {ϑi}MGSM
i=1 is the measurement noise containing MGSM i.i.d entries such that

ϑi ∼ N (0, σ2
ϑ).

Then, a real-valued ML estimator K̂r of sparsity order k that maximizes the joint pdf of

measurements parameterized by k and provides the estimate k̂r is given by

K̂r =
1

MGSM

∑MGSM

i=1 yi
2 − (Nσ2

φσ
2
ε + σ2

ϑ)

σ2
φ(µ2

s + σ2
s − σ2

ε )
. (3.26)
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An integer-valued ML estimate k̂GSOE for the sparsity order k is one of the two integer-

valued estimates bk̂rc and dk̂re which maximizes the pdf as follows.

pY (y; k) = 1

(2π(kσ2
φ(µ

2
s+σ

2
s−σ2

ε )+Nσ
2
φσ

2
ε+σ

2
ϑ))

MGSM
2

×

exp
[

−1
2(kσ2

φ(µ
2
s+σ

2
s−σ2

ε )+Nσ
2
φσ

2
ε+σ

2
ϑ)

∑MGSM

i=1 y2i

]
,

i.e.,

k̂GSOE = arg max
k∈{bk̂rc,dk̂re}

pY (y; k). (3.27)

Proof. Using Equations (2.18) and (2.19) given in Chapter 2, the mean and variance of
each GSM measurement are given as,

E{yi} = 0 and

VAR{yi} = kσ2
φ(µ2

s + σ2
s − σ2

ε ) +Nσ2
φσ

2
ε + σ2

ϑ.

Now using central limit theorem and independence property, for any random variable sj ,
i.e., for sj need not be a Gaussian, the central limit theorem makes the pdf of measurements
to be Gaussian, i.e., yi = (

∑N
j=1 φi,jsj + ϑi) ∼ N (0, kσ2

φ(µ2
s + σ2

s − σ2
ε ) + Nσ2

φσ
2
ε + σ2

ϑ).
Thus, the joint pdf of MGSM random variables {yi}MGSM

i=1 is given as

pY (y; k) = 1

(2π(kσ2
φ(µ

2
s+σ

2
s−σ2

ε )+Nσ
2
φσ

2
ε+σ

2
ϑ))

MGSM
2

×

exp
[

−1
2(kσ2

φ(µ
2
s+σ

2
s−σ2

ε )+Nσ
2
φσ

2
ε+σ

2
ϑ)

∑MGSM

i=1 y2i

]
.

Let a = σ2
φ(µ2

s +σ2
s −σ2

ε ) and b = Nσ2
φσ

2
ε +σ2

ϑ. Then, the joint probability distribution
of MGSM random variables, {yi}MGSM

i=1 parameterized by k is given as

pY (y; k) =
1

(2π(ak + b))
MGSM

2

exp

[
−1

2(ak + b)

MGSM∑
i=1

y2i

]
. (3.28)

Equation (3.28) is the likelihood objective function for the GSM measurements. Taking
logarithm, the log-likelihood function is,

log{pY (y; k)} = log{(2π(ak + b))
−MGSM

2 } −
[

1
2(ak+b)

∑MGSM

j=1 y2j

]
(3.29)

= −MGSM

2
log{2π} − MGSM

2
log{ak + b} −

[
1

2(ak+b)

∑MGSM

j=1 y2j

]
(3.30)
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Since ML estimation is obtained by maximizing the Equation (3.30), the objective function
becomes,

log{pY (y; k)} = −MGSM

2
log{(ak + b)} −

[
1

2(ak + b)

MGSM∑
j=1

y2j

]
(3.31)

as −MGSM

2
log{2π} is a constant. Setting the first order partial derivative of log(pY (y; k))

with respect to k to 0 gives the real-valued ML estimator,

K̂r =
1

MGSM

∑MGSM

i=1 yi
2 − b

a

=
1

MGSM

∑MGSM

i=1 yi
2 − (Nσ2

φσ
2
ε + σ2

ϑ)

σ2
φ(µ2

s + σ2
s − σ2

ε )
.

Because sparsity order k is an integer, the integer-valued estimator K̂GSOE is obtained by
finding an integer that maximizes the pdf pY (y; k). Hence, the integer-valued estimate
k̂GSOE can be obtained from the real-valued ML estimate k̂r and it is one among the two
integer values bk̂rc and dk̂re where bk̂rc = maxk∈Z k ≤ k̂r and dk̂re = mink∈Z k ≥ k̂r

such that
k̂GSOE = arg max

k∈{bk̂rc,dk̂re}
pY (y; k).

3.3.1 Properties of K̂GSOE Estimator

1. The K̂GSOE estimator is an unbiased estimator.

2. The variance of the K̂GSOE estimator is,

VAR{k̂GSOE} =
2

MGSM

(σ2
φ(µ2

s + σ2
s − σ2

ε )k +Nσ2
φσ

2
ε + σ2

ϑ)2

(σ2
φ(µ2

s + σ2
s − σ2

ε ))
+

1

12
. (3.32)

3. The Cramer Rao Lower Bound (CRLB) for the integer parameter k is given by,

CRLB(k̂) =
2

MGSM

(σ2
φ(µ2

s + σ2
s − σ2

ε )k +Nσ2
φσ

2
ε + σ2

ϑ)2

(σ2
φ(µ2

s + σ2
s − σ2

ε ))
. (3.33)
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3.3.2 Proof for the properties of GSOE

The unbiasedness of GSOE is shown by proving E{k̂GSOE} = k. It is also shown that the
variance of GSOE is closer and approximately equal to CRLB.

3.3.2.1 Proof for unbiasedness

Since k̂GSOE is the round-off result of k̂r, it can be written as,

k̂GSOE = k̂r + kδ (3.34)

where kδ ∼ U{−0.5, 0.5} is the uniformly distributed round-off error.
From Equation (3.34)

E{k̂GSOE} = E{k̂r}+ E{kδ}

= E{k̂r} {since E{kδ} = 0.}

=
1

MGSM

∑MGSM

i=1 E{y2i } − b
a

=

MGSM (ak+b)
MGSM

− b
a

= k.

Since, E{k̂GSOE} = k, the estimator k̂GSOE is an unbiased estimator.

3.3.2.2 Variance of GSOE

The variance of k̂GSOE is derived from the variance of k̂r and is given by,

VAR{k̂GSOE} = VAR{k̂r}+ VAR{kδ} − 2COVAR{k̂r, kδ} (3.35)

= VAR{k̂r}+
1

12
− 2COVAR{k̂r, kδ} (3.36)

= VAR{k̂r}+
1

12
{since COVAR{k̂r, kδ} ≈ 0}. (3.37)
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The VAR{k̂r} is computed as follows.

VAR{k̂r} = VAR

{
1

MGSM

∑MGSM

i=1 y2i − b
a

}

=
1

(aMGSM)2

MGSM∑
i=1

VAR{y2i }

=
1

(aMGSM)2

MGSM∑
i=1

(E{y4i } − (E{y2i })2

=
1

(aMGSM)2

MGSM∑
i=1

(3(ak + b)2 − (ak + b)2)

=
1

(aMGSM)2
2MGSM(ak + b)2

=
2

MGSM

(ak + b)2

a2

=
2

MGSM

(σ2
φ(µ2

s + σ2
s − σ2

ε )k +Nσ2
φσ

2
ε + σ2

ϑ)2

(σ2
φ(µ2

s + σ2
s − σ2

ε ))
2

.

Thus,

VAR{k̂GSOE} =
2

MGSM

(σ2
φ(µ2

s + σ2
s − σ2

ε )k +Nσ2
φσ

2
ε + σ2

ϑ)2

(σ2
φ(µ2

s + σ2
s − σ2

ε ))
2

+
1

12
.

3.3.2.3 CRLB for the SOE

For any integer parameter, the CRLB can be derived by computing either the second for-
ward or second backward difference as given in [64]. Thus for the integer parameter k, the
CRLB can be derived by computing the second forward difference for the ln(pY (y; k)) of
likelihood given in Equation (3.30).
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The second forward difference of log-likelihood ln(pY (y; k)) is given by,

ln(pY (y; k + 2))− 2 ln(pY (y; k + 1)) + ln(pY (y; k))

=
−MGSM

2
ln

(
(ak + b)(a(k + 2) + b)

(a(k + 1) + b)2

)
− 1

2

MGSM∑
i=1

y2i

(
1

ak + b
+

−2

a(k + 1) + b
+

1

a(k + 2) + b

)
≈−MGSM

2

(
−a2

(a(k + 1) + b)2

)
− 1

2

MGSM∑
i=1

y2i

(
2a2

(ak + b)(a(k + 1) + b)(a(k + 2) + b)

)
.

Using the second forward difference of log-likelihood,

−1

E{ln(pY (y; k + 2))− 2 ln(pY (y; k + 1)) + ln(pY (y; k))}

= −
(
−MGSM

2

(
−a2

(a(k + 1) + b)2

)
+

1

2

MGSM∑
i=1

E{y2i }
(

2a2

(ak + b)(a(k + 1) + b)(a(k + 2) + b)

))−1
≈ 2

MGSMa2
(ak + b)2; (k ≈ k + 1 ≈ k + 2 when k is large)

=
2

MGSM

(σ2
φ(µ2

s + σ2
s − σ2

ε )k +Nσ2
φσ

2
ε + σ2

ϑ)2

(σ2
φ(µ2

s + σ2
s − σ2

ε ))
.

3.4 Estimation performance of GSOE

From Equation (3.26), it can be observed that GSOE requires knowledge of the statistics
of significant coefficients. Because composite sensing was used, the estimates of the statis-
tics of the significant coefficients were obtained using BSOE and substituted into Equa-
tion (3.26) to obtain the GSOE-based estimate. Hence, this section presents the estimation
performance of GSOE using simulation with the help of the composite sensing matrices
GSM and BSM.

Here, the simulation setup is similar to that used for evaluating the performance of
BSOE, i.e., a compressible signal of dimension N = 2500 with sparsity order k = 200 was
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generated with µs = 1, σ2
s = 25 and σ2

ε = 0.2. A total of 800 GSM-based measurements
were obtained. The measurement noise was added such that the SNR values were 0 dB, 5
dB, and 10 dB. Here, the SNR is computed as 10 log10

‖ΦGSMs‖22
‖ϑGSM‖22

. The GSM is fixed and
not changed for different SNR values in the simulation setup. Initially, the statistics were
estimated using MBSM = 130 measurements obtained from the BSM. Then, for every
GSM measurement, GSOE was performed to evaluate the efficiency of the GSOE with the
number of measurements.

Figure 3.3 shows the GSOE-based estimates obtained under different SNR conditions.
For SNR values of 5 dB and 10 dB, the average sparsity order estimate converged to 200±
10 with nearly MGSM = 200 measurements. However, for an SNR value of 0 dB, the
effect of measurement noise is significant, and the estimator requires nearly MGSM > 300

measurements for convergence.
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Figure 3.3: GSOE performance on estimating the sparsity order k = 200 for the different
number of measurements under different SNR values.

3.5 Comparing BSOE and GSOE

Both the BSOE and GSOE are ML estimation techniques. The BSOE technique estimates
the statistics and sparsity order with a limited number of measurements, and its estimation
performance is shown in Figure 3.2. The GSOE technique requires estimates of statistics
obtained from the BSOE to perform SOEE. Thus, GSOE depends on BSOE, and its accu-
racy depends on the estimation accuracy of BSOE. The performance results are presented
in Fig. 3.3.
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To compare the SOE performances of BSOE and GSOE, a simulation was performed
for a compressible signal with dimension N = 2500 whose sparsity order k was varied
from 50 to 500 in steps of 25, and the SNR was maintained at 10 dB. The statistics for the
significant and insignificant coefficients were µs = 1, σ2

s = 25 and σ2
ε = 0.2, respectively.

There were 100 realizations for each sparsity order value. In each realization, the support
was randomly chosen, and the BSOE and GSOE estimates were obtained and averaged
for 100 realizations. Considering k̂BSOE and k̂GSOE are the average BSOE and GSOE
estimates, respectively, the weighted average of these two estimates is computed as

k̂avg =
MBSM k̂BSOE +MGSM k̂GSOE

MBSM +MGSM

. (3.38)

The results of these estimates are presented in Fig. 3.4. The BSOE and GSOE estimates
perform similarly, and their weighted average k̂avg shows a better accuracy. As both BSOE
and GSOE are ML estimation techniques, the weighted average of their estimates, i.e., k̂avg
is denoted as k̂ML from now.
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Figure 3.4: Performances of BSOE and GSOE on estimating the sparsity orders k = 25
to k = 500 under the SNR value of 10 dB. It is observed that both BSOE and GSOE
perform similarly and the weighted average estimate of BSOE and GSOE i.e., k̂avg has
better accuracy.

The SOEE performance of k̂ML is assessed for different SNR values, as shown in Fig-
ure 3.5. Here, for each SNR value, the SOEE was computed for different sparsity order
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values k = 25 to k = 500 and the result was averaged as

Average SOEE (ASOEE) =

∑
k SOEE(k)

total number of sparsity order values
. (3.39)

It was observed that as the SNR increased, the SOEE performance improved and the
ASOEE decreased. This result is similar to the SOEE performance results for BSOE shown
in Fig. 3.2.
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Figure 3.5: Average SOEE performance of k̂ML for different SNR values.

3.6 Summary

In this chapter, the ML estimators BSOE and GSOE using BSM and GSM matrices are
derived. The statistical properties of both estimators are presented. Neither of these esti-
mators requires any a priori information regarding the statistics of the compressible signal.
These are unbiased estimators, and their performances are similar. The weighted average
of both estimators is used as the ML estimator in subsequent chapters.
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Chapter 4

Improving the maximum likelihood esti-
mates

In the previous chapter, the ML estimators GSOE and BSOE were derived, and their prop-
erties were discussed. From Equation (3.23), it is observed that the variance of K̂BSOE

increases with sparsity order k. In fact, a small perturbation in the value of p̂0 would result
in a large variation in the value of K̂BSOE as observed from the derivative of the function
K̂BSOE with respect to the variable p̂0 i.e.,

∂K̂BSOE

∂p̂0
=

1

p̂0 log λ
.

Hence, for any fixed λ, the estimator K̂BSOE must be stabilized against its inherent sensi-
tivity to randomness in the estimate p̂0.

It is also observed from Equation (3.33) that in the absence of measurement noise and
insignificant coefficients, the variance of K̂GSOE approaches the lower bound 2k2/MGSM

which determines the spread in the estimate k̂GSOE . The spread of the estimate decreases
when the measurement sizeMGSM increases. However, because the lower bound is directly
proportional to k2, the measurement size MGSM required to reduce the spread increases
quadratically with sparsity order k which defeats the purpose of CS.

The robustness of the ML estimators can be improved either by increasing the number
of measurements or by utilizing an appropriate model for the time-varying sparsity order
k(n). For efficient CS acquisition, the measurement size should not be increased beyond
the minimum value required for perfect CS recovery. Thus, by exploiting the underlying
discrete Markov model for time-varying sparsity order, the ML estimates are improved.
Two approaches are considered here to refine the ML estimates. The first approach employs
an ML Sequence (MLS) estimator using the Viterbi algorithm, and the second employs a
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Kalman filter, which is the optimal Linear Minimum Mean-Squared Estimator (LMMSE).

4.1 Approach 1: ML sequence estimation of ML estimates

The ML estimates can be refined further by exploiting the Markovian property of sparsity
order variation. This property fits the framework of the MLS estimation implemented using
the classical Viterbi algorithm.

The MLS estimates {k̂MLS(n)}Ln=1 are obtained by identifying an optimal L-length
sequence of sparsity orders that has the maximum probability of occurrence under the con-
dition that the ML estimates of sparsity orders {k̂ML(n)}Ln=1 are available, as given in
Equation (4.1).

{k̂MLS(n)}Ln=1 = argmax
{kMLS(n)}Ln=1

Pr
[
{kMLS(n)}Ln=1 | ({k̂ML(n)}Ln=1, pd)

]
. (4.1)

Before implementing Equation (4.1), the ML estimates must be filtered to remove
outliers, if any, and to reduce the spread of values in the sequence of the ML estimates
{k̂ML(n)}Ln=1. Because the sparsity order remains constant on an average of L̃ survival
time steps, a simple L̃−tap moving average (MA) filter is considered to prefilter the ML
estimates. The filtered estimate is rounded to the nearest integer. The effect of filtering the
ML estimates using MA is shown in Figures 4.1(a) and (b) for two different sequences of
sparsity orders with slow and fast variations, respectively. The ML estimates of the slow-
and fast-varying sparsity orders (sparsity levels) are filtered using L̃ = 10 and L̃ = 3 taps,
respectively. These filtered ML estimates are then refined using the Viterbi algorithm. To
maintain the brevity of the notation, we denote the filtered estimates as k̂ML in the follow-
ing sections.

4.1.1 Viterbi Algorithm

MLS estimation using the Viterbi algorithm is similar to estimating the most probable
sequence of L hidden states from the sequence of L observations emitted by those hidden
states in the hidden Markov problem. Here, the MLS and filtered ML estimates represent
hidden states and observations, respectively. Because hidden states are refined versions of
observations in this hidden Markov problem, the transition probability values of the hidden
states and the emission probability values of observations from those hidden states are the
same.
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(a) Slow varying: p0 = 0.98 and SNR=10 dB
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(b) Fast varying: p0 = 0.75 and SNR=10 dB

Figure 4.1: Effect of MA filtering of ML estimates of slow and fast varying sparsity orders
(sparsity levels).

The MLS estimate k̂MLS(L) at Lth instant is obtained by maximizing the probability
qvL, which is the probability that the sequence {k̂MLS(n)}L−1n=1 accounts for first L−1 refined
estimates of {k̂ML(n)}Ln=1 and k̂MLS(L) = v at Lth instant given the knowledge of sparsity
order variation probability pd, i.e.,

qvL = max
{k̂MLS(n)}L−1

n=1

Pr[{k̂MLS(n)}L−1n=1 , k̂MLS(L) = v,

{k̂ML(n)}Ln=1 | pd].
(4.2)
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Using the induction principle, the highest probability for selecting the sub-sequence {k̂MLS(n)L−2n=1

such that the sequence {k̂MLS(n)L−2n=1 , k̂MLS(L−1) = u, k̂MLS(L) = v} ending at the spar-
sity order v can be computed as,

qvL = max
u

[
quL−1pd

]
. (4.3)

Considering ΓL(v) = arg max
u

[
quL−1pd

]
, the MLS estimates at time steps n = L− 1, L−

2, ..., 1 can be computed using the trace-back technique, i.e., k̂MLS(n) = Γn+1(k̂MLS(n +

1)).

4.1.2 ML Estimation of Markov Model Parameters

As the probability pd is not available a priori for the MLS estimation, it is estimated
using the ML principle [65] from the filtered ML estimates. Considering the sequence
{k̂ML(n)}Ln=1, the ML estimated transition probability p̂d is given as,

p̂d =
number of d transitions in {k̂ML(n)}Ln=1

L
. (4.4)

4.1.3 Sensitivity of MLS Estimation

The errors in the input sequence {k̂ML(n)}Ln=1 to the MLS estimator affect the estimate
of pd, leading to a model mismatch. To demonstrate the sensitivity of the MLS estimator,
we simulated a discrete Markov model in which the birth and death transition probabil-
ities were considered equal and kept constant throughout the simulation. For each p0, a
sequence of 128 sparsity orders was generated and perturbed by introducing errors at ran-
dom locations to mimic the errors in the ML estimate after filtering. The probabilities
p<0 =

∑
d<0 pd, p0, and p>0 =

∑
d>0 pd were estimated using Equation (4.4), and the

Viterbi estimator was applied to the perturbed sequence. For each p0, the numbers of errors
introduced were 10, 20, 30, 40, and 50. The estimates of the transition probabilities for
each p0 after the introduction of the errors are shown in Figure 4.2. The robustness of the
MLS estimation method in terms of the number of sparsity order errors before and after
MLS estimation is shown in Figure 4.3 for different values of model parameters.

Observations:

1. For the slow varying case (p0 = 0.98, p<0 = 0.01, and p>0 = 0.01), when the errors
in ML estimates are less, the errors in the estimated transition probabilities (p̂<0,
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(b) Case2: Fast varying: p0 = 0.75
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Figure 4.2: Effect of ML estimation error on estimating the transition probabilities.
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Figure 4.3: Robustness of MLS estimation method on correcting the sparsity order errors
(errors in the k̂ML estimates) for different values of Markov model parameters.

p̂>0, and p̂0) are also less, as shown in Figure 4.2(a), and the MLS estimation was
sufficiently robust to correct most of the errors, as shown in Figure 4.3. However,
when the errors in the ML estimates are large and bursty in nature, the errors in
the estimated transition probabilities are large, as shown in Figure 4.2(a), and the
performance of the Viterbi algorithm deteriorated and exhibited poor performance,
as shown in Figure 4.3.

2. The worst-case scenario is for the rapid varying case i.e., when p0 = 0.33, p<0 =

0.33, and p>0 = 0.34. Here, the errors in the ML estimates of the sparsity order are
indistinguishable from those of the natural variation in the sparsity order, and the ML
estimated transition probabilities are independent of the number of errors introduced,
as shown in Figure 4.2(c). Therefore, the Viterbi estimator cannot recognize these
errors. Hence, the correction was reduced, as shown in Figure 4.3.

Thus, the error in the estimate of transition probabilities harms the MLS output only
if many ML estimates are in error or if the rate of change of the sparsity order is very
high. It can be observed in Figures 4.2(a), (b), and (c) when no errors are introduced in
the sparsity order, the estimate of the transition probabilities converges to the true value
of transition probabilities. When a larger number of errors is introduced in the sparsity
order, the perturbed sequence of the sparsity orders exhibits uniform variations. Thus, the
estimates of the total birth, death, and survival probabilities converged to 0.33.

The MLS estimation technique is summarized in Algorithm 5.
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Algorithm 5 MLS estimation of sparsity order

Input: y(n), Known values: σ̂2
ϑ, L̃, L

1. Estimate the statistics of the coefficients by using the BSOE algorithm given in
Algorithm 4.

2. Estimate the sparsity order using BSOE.

k̂BSOE = log(P̂0)
log(λ)

.

3. Estimate the sparsity order using the GSOE.

k̂GSOE =
1

MGSM

∑MGSM
i=1 yi

2−(Nσ2
φσ

2
ε+σ

2
ϑ)

σ2
φ(µ

2
s+σ

2
s−σ2

ε )
.

4. Compute the ML estimate k̂ML =
⌊
MBSM k̂BSOE+MGSM k̂GSOE

MBSM+MGSM

⌉
.

5. Filter the ML estimate using a MA filter of length L̃.

k̂ML(n) = b
∑n
I=n−L̃+1

k̂ML(I)

L̃
e

6. Estimate the transition probability values of the Markov model:

p̂d =
number of d transitions in {k̂ML(I)}nI=n−L+1

L
.

7. Apply the Viterbi algorithm to the sequence {k̂ML(I)}nI=n−L+1 using the estimated
transition probability values to obtain the MLS estimates {k̂MLS(I)}nI=n−L+1.

8. n = n+ 1 and repeat from Step 1.

Output: MLS estimates: k̂MLS(n)
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4.2 Approach 2: Kalman filtering of ML estimates

Kalman filtering of BSOE-based ML estimates (KML) uses the discrete Markov model
characterization of time-varying sparsity order k(n) given in Equation (2.20) as the state
model. This state model can be represented as,

k(n) = k(n− 1) + w(n) : VAR{w(n)} = Qw, (4.5)

where w(n) is an integer-valued random process with w(n) > 0 indicating birth, w(n) < 0

indicating death, and w(n) = 0 indicating survival.
The observation for the Kalman filter is the estimate of the probability P0(n) given as

P̂0(n) =
∑MBSM
i=1 δτ (yi)

MBSM
. Due to the inherent statistical variations in computing the probabil-

ity P0(n), its estimate P̂0(n) can be written as,

P̂0(n) = P0(n) + v(n) = λk(n) + v(n), (4.6)

where v(n) denotes zero-mean random statistical fluctuation. Observe that the nonlinear
relation in Equation (4.6) prevents one from applying the Kalman filter to obtain an estimate
of k(n). To overcome this problem, we apply the logarithm and arrive at a modified form
of the observation model, as given below, with the state-dependent noise v(n).

log(P̂0(n)) = log(λk(n) + v(n)) (4.7)

= k(n) log(λ) + log

(
v(n)

λk(n)
+ 1

)
(4.8)

= k(n) log(λ) + v(n). (4.9)

Now let us consider the modified noise

v(n) = log

(
v(n)

λk(n)
+ 1

)
,

which has a zero mean and variance σ2
v ≈ 1−λk(n)

MBSM (n)λk(n)
. Then, the linear Kalman filter

using Equations (4.5)and (4.7) is as follows:
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k̂(n|n-1) = k̂(n-1|n-1) (4.10)

C(n|n-1) = C(n-1|n-1) +Qw (4.11)

K(n) =
C(n|n-1) log(λ)

C(n|n-1)(log(λ))2 + σ2v
(4.12)

r(n) = log(P̂0(n))− log(λ)k̂(n|n-1) (4.13)

k̂(n|n) = k̂(n|n-1) +K(n)r(n); (4.14)

C(n|n) = (1− log(λ)K(n))C(n|n-1) (4.15)

k̂(n|n) = K̂KML(n) =
⌊
k̂(n|n)

⌉
. (4.16)

where C(n|n-1) and C(n|n) are the priori and posteriori estimation error covariances,
respectively, K(n) is the Kalman gain, r(n) is the residual, k̂(n|n-1) and k̂(n|n) are the
priori and posteriori estimates of k(n), respectively, and the Kalman filtered ML estimate
is K̂KML(n).

The procedure for estimating the sparsity order using BSOE and GSOE followed by
Kalman filtering is summarized and presented in Algorithm 6.

4.2.1 Effect of Kalman filtering with optimum value of λ

The effect of Kalman filtering on static and time-varying sparsity order is discussed below.

4.2.1.1 Case 1: Time-invariant sparsity order

The reduced variance of the Kalman-filtered estimate k̂KML was verified for different time-
invariant sparsity order values k, as shown in Table 4.1. Here, at every time step, for a given
sparsity order k, the support Ss of the significant coefficients alone varies.

k VAR{k̂ML} VAR{k̂KML}
100 45.071 0.010
150 61.026 0.108
200 89.371 0.157
250 116.247 0.167
300 125.036 0.172

Table 4.1: Illustration of reduction in variance using Kalman filtering. The table shows
that the Kalman filter reduces the variance of the ML estimate drastically.
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Algorithm 6 Kalman Filtering of ML estimates

Input: y(n), Known values: σ̂2
ϑ

1. Estimate the statistics of the coefficients by using the BSOE algorithm given in
Algorithm 4.

2. Estimate the sparsity order using BSOE.

k̂BSOE = log(P̂0)
log(λ)

.

3. Estimate the sparsity order using the GSOE.

k̂GSOE =
1

MGSM

∑MGSM
i=1 yi

2−(Nσ2
φσ

2
ε+σ

2
ϑ)

σ2
φ(µ

2
s+σ

2
s−σ2

ε )
.

4. Compute the ML estimate k̂ML =
⌊
MBSM k̂BSOE+MGSM k̂GSOE

MBSM+MGSM

⌉
.

5. Estimate the variance of the state noise.

σ2
v =

1− λk̂ML(n)

MBSM(n)λk̂ML(n)
.

6. Estimate the variance Qw from the sparsity order variations.

Qw = V AR{k̂ML(n-1)− k̂ML(n-2)}.

7. Kalman filtering of P̂0(n):

k̂KML(n|n-1) = k̂KML(n-1|n-1) (4.17)

C(n|n-1) = C(n-1|n-1) +Qw (4.18)

K(n) =
C(n|n-1) log(λ)

C(n|n-1)(log(λ))2 + σ2v
(4.19)

r(n) = log(P̂0(n))− log(λ)k̂KML(n|n-1) (4.20)

k̂KML(n|n) = k̂KML(n|n-1) +K(n)r(n); (4.21)

C(n|n) = (1− log(λ)K(n))C(n|n-1) (4.22)

k̂KML(n|n) = k̂KML(n) =
⌊
k̂KML(n|n)

⌉
. (4.23)

Output: Kalman filtered estimate of sparsity order: k̂KML(n)
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Figure 4.4: Comparision of sparity order estimates. The BSOE estimates have fluctuations
around the true value and the Kalman filter reduces those fluctucations and improves the
SOE.

4.2.1.2 Case 2: Time-varying sparsity order

A simulation example is presented in Figure 4.4 to establish an improvement by Kalman
filtering for the time-variant sparsity order k(n). In the simulation setup, the sparsity or-
der was varied using a Markov process controlled by probabilities Pr[w(n) = 0] = 0.8,
Pr[w(n) < 0] = 0.1, and Pr[w(n) > 0] = 0.1. A time-varying compressible signal
with k(0) = 100 significant components (above a certain threshold) and the rest with in-
significant components (below the threshold), obeying power-law decay, is generated. The
number of significant components is allowed to vary, i.e., k(n) : n > 0 is generated using
the Markov process and is represented as true sparsity order. Figure 4.4 shows that the
Kalman filtered estimates k̂KML(n) track the true sparsity order and have a reduced error
compared with the estimates k̂KML(n) obtained using BSOE and GSOE.
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Chapter 5

Proposed CS acquisition and recovery sys-
tem

This chapter covers the practical implementation of the CS acquisition and recovery sys-
tems. The design of the composite sensing matrix and the procedure for determining the
number of measurements are described. A method for coarse support estimation through
BSM-based measurements that accelerates the recovery of compressible signals is also put
forth.

5.1 CS acquisition system

The practical real-time composite sensing hardware for the proposed CS acquisition system
is shown in Figure 5.1. There are M identical and independent modulator circuits working
in parallel. The hardware components of a modulator circuit are (i) a multiplexer to select
between the sensing basis gi(t) (continuous-time version of rows of GSM multiplied by
Ψ−1) and the sensing basis bi(t) (continuous-time version of rows of BSM multiplied by
Ψ−1) and (ii) a multiplier and an Integrate and Dump (I&D) circuit to multiply and integrate
the compressible signal with the sensing basis for a duration of T seconds to output a
measurement.

The select signal βi(t) of the multiplexer takes the value 0 for i ≤ MBSM to select
the basis bi(t) and 1 for MBSM < i ≤ M to select the basis gi(t). From the obtained
measurements, the proposed KML method estimates the sparsity order and then decides
βi(t) and M for the next T seconds.

The proposed architecture is similar to the practical Random Modulation Pre-Integration
(RMPI) hardware [66] with a difference in the multiplexer and select signal for multiplex-
ing the sensing basis bi(t) and gi(t).

69



Figure 5.1: The block diagram of CS acquisition hardware. This is similar to RMPI hard-
ware with the difference of multiplexer switching between GSM and BSM equivalent sig-
nals.

The real-time determination of the total number of measurements based on the esti-
mated sparsity order is explained as follows.
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5.1.1 Determining the number of measurements for the composite sens-
ing system

It is known that the sparsity order k(n) must be estimated from the obtained measurements
y(n). However, the measurements size M(n) of y(n) has to be estimated based on the
sparsity order k(n) before obtaining y(n) using Equation (1.14) to result in a Chicken-Egg
problem. Thus, it is practically impossible to simultaneously estimate the sparsity order
and the size of the measurements for the current time step n. Hence, the estimated sparsity
order k̂(n) for the current time step n is used to determine the number of measurements
M(n+ 1) for the next time step n+ 1. This determination is acceptable because naturally
occurring time-varying compressible signals are quasi-static and exhibit a stronger tempo-
ral correlation resulting in quasi-static sparsity order. Thus after obtaining the measurement
vector y(n), the sparsity order k(n) is estimated to determine the number of measurements
M(n+ 1) for the next time step. As the composite sensing system is built using BSM and
GSM, the number of measurements required for each is computed as follows.

5.1.1.1 Number of BSM-based measurements

The number of BSM measurements depends on the parameter λ which is the probability
of an entry being zero in the BSM. The value of parameter λ is chosen according to the
sparsity order k(n) of the signal as λ = 1 − exp(−1.6/k(n)). As the sparsity order k(n)

for the current time step is not known, λ is computed using the previous estimate k̂(n− 1)

i.e., λ ≈ exp(−1.6/k̂(n− 1)).
The BSM is designed by stacking bN(1 − λ)c numbers of b 1

1−λc × b
1

1−λc Identity
matrices horizontally. Thus there are b 1

1−λc rows. Hence the number of BSM-based mea-
surements is,

MBSM(n) =
⌊ 1

1− λ

⌋
(5.1)

=
⌊ 1

(1− exp(−1.6/k(n− 1))

⌋
(5.2)

=
⌊
0.63k(n− 1)

⌋
. (5.3)
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5.1.1.2 Number of GSM-based measurements

The number of GSM-based measurementsMGSM(n) is computed using Equation 1.14, and
is given as,

MGSM(n) =
⌈
2k(n− 1) log

(
N

k(n− 1)

)⌉
. (5.4)

Each component φi,j of the GSM ΦGSM is i.i.d. Gaussian, such that φi,j ∼ N (0, 1/MGSM).
Combing Equations (5.3) and (5.4), the total number of measurements acquired by the

composite CS acquisition system is,

M(n) = MBSM(n) +MGSM(n) (5.5)

=

⌈
k(n− 1)

(
0.63 + 2 log

(
N

k(n− 1)

))⌉
(5.6)

5.1.2 Procedure for determining the number of measurements

When starting the acquisition at n = 0, the previous estimate k̂(−1) is not available. Hence
it is assumed that k̂(−1) = kmax, where kmax is the maximum possible sparsity order for a
compressible signal which is known a priori. Thus the number of measurements obtained
initially is,

M(0) =

⌈
kmax

(
0.63 + 2 log

(
N

kmax

))⌉
.

Once M(0) measurements are obtained, the proposed SOE method provides the estimate
k̂(0) which in turn determines M(1), and this process continues. Thus both the number of
measurements M(n) and the sparsity order k(n) are estimated sequentially, i.e., k̂(n − 1)

determines M(n) and these M(n) measurements provide the estimate k̂(n).

5.1.3 Construction of BSM

The BSM is constructed such that it spans all the significant coefficients distributed across
N positions to estimate the statistics µs and σ2

s . As each row of BSM has N(1 − λ)

ones, the BSM matrix is designed by stacking bN(1 − λ)c numbers of b 1
1−λc × b

1
1−λc

Identity matrices horizontally. If bN(1− λ)c b 1
1−λc 6= N , then the remaining N −bN(1−

λ)c b 1
1−λc numbers of 1-sparse binary column vectors are added at the end to obtain the

b 1
1−λc ×N−dimensional BSM.

As the structure of the BSM changes according to k(n), the BSM must be transmitted to
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the recovery process at every time step, along with the obtained measurements for recovery.
However, the deterministic construction of the BSM avoids transmitting such overhead as
the recovery process performs instantaneous sparsity order estimation from the obtained
measurements as done during acquisition.

5.2 CS recovery system

Two approaches to CS recovery systems are presented in this section. The first approach
uses the Viterbi algorithm, whereas the second approach uses a Kalman filter, as illustrated
in Figure 5.2 and Figure 5.3, respectively. The approach based on Viterbi algorithm per-
forms trace back-based sequence estimation and hence there is a delay of ν time-steps in
providing the sparsity order estimates.

Figure 5.2: Viterbi algorithm and BSM aided CS recovery system. The system comprises
of the major blocks: the input measurements, the composite sensing circuit, the Viterbi
algorithm-based SOE block, the BAOMP-based recovery block, and the recovered signal.
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Figure 5.3: Kalman filter and BSM aided CS recovery system. The system comprises
of the major blocks: the input measurements, the composite sensing circuit, the Kalman
filter-based SOE block, the BAOMP-based recovery block, and the recovered signal.

5.2.1 Implementation of Viterbi algorithm for MLS estimation

Here sliding window-based Viterbi algorithm is considered. There exist two parallel sliding
windows and each window requires a Viterbi estimator. The L-length sequence of ML
estimates of the sparsity order is decomposed into blocks of M ML estimates. The value
M is five times the trace-back length T where T is the maximum sparsity order transition
possible in a time step. Each sliding window size is kept similar to the block size, M .
Both the Viterbi estimators do not require the knowledge of initial state probabilities and
the trellis terminated state.

From Figure 5.4, it can be observed that after receiving Block-1 at time n = M , the
first Viterbi estimator starts the training of trace-back from sub-block TB. After T time
steps i.e., at n = (M + T )th time step, the first Viterbi estimator starts providing the MLS
estimates of sparsity order received during time steps n = T to n = M−T−1. Meanwhile,
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Figure 5.4: Illustration of sliding window Viterbi algorithm.

the second Viterbi estimator starts the trace-back training from the time step n = 2M−2T .
After T time steps i.e., at n = (2M − T )th time step, the second Viterbi estimator starts
providing the MLS estimates of sparsity order received during time steps n = M − T to
n = 2M − 3T − 1. Thus with a group delay of M time steps, the sliding window-based
Viterbi algorithm provides MLS estimates of sparsity order without knowing the initial
state probabilities and trellis termination.

It should be noted that for fast and rapidly varying sparsity order, the Viterbi algorithm
exhibits poor performance in correcting the errors introduced by the filtered estimates k̂ML

as shown in Figure 4.3. Thus, the proposed Viterbi algorithm-based MLS estimation tech-
nique is suitable for slow and moderately varying sparsity order to provide better MLS
estimates with lower computational complexity. If the rate of sparsity order variation is
higher than that of the estimation speed, then the filtered ML estimates are retained as the
best estimates without executing the Viterbi algorithm.

5.2.2 The proposed BSM Aided OMP method

The composite sensing matrices used during CS recovery are the same as those used dur-
ing CS acquisition. Our proposed recovery system uses BSM-based measurements along
with GSM-based measurements. It differs from the conventional CS recovery system that
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uses GSM-based measurements alone. The BSM-based measurements are used for SOE
as a first step in CS recovery. The SOE techniques used during recovery are the same as
those used during acquisition. The estimated sparsity order k̂(n) is the input for the pro-
posed BSM Aided OMP (BAOMP) recovery algorithm. We choose OMP for recovery as
it is simple to implement and has robust recovery performance [5]. In OMP, the probable
support indices are identified one by one in each iteration. Because there are k support
indices for the k−sparse compressible signal, there are k iterations. As the BSM-based
measurements provide a few initial estimates of the support indices, the OMP algorithm
must estimate only the remaining support indices.

Some BSM measurements may have no contributions from the significant coefficients
and have magnitudes less than the threshold τ = 3

√
N(1− λ)σ2

ε + σ2
ϑ as discussed in

Chapter 3. On contrary the measurements having magnitudes greater than the thresh-
old, i.e., |(yi)BSM | > τ indicates that each of such measurements yi has at least one
significant component’s contribution. The corresponding rows of such measurements yi
provide information about the probable support indices based on the locations of 1’s in
those rows. For example, suppose the dimension of the BSM is 10 × 250. We con-
struct the BSM by horizontally stacking 25 identity matrices of dimensions 10 × 10. If
the first BSM measurement has a magnitude greater than the threshold τ , then the com-
pressible signal may have significant components probably located at either 1st location,
11th location, 21st location, or so on, up to 241st location. Thus, if |(yi)BSM | > τ , then
{i, i+MBSM , i+ 2MBSM , . . . , i+ ((N/MBSM)−1)MBSM} are the support indices of the
BSM-based support estimate ŜBSM as shown in Algorithm 7.

As the GSM obeys the RIP property, the proxy z = ΦT
GSMyGSM for the compressible

signal x provides the GSM-based support estimate ŜGSM by choosing indices of 1 ≤ L ≤ k̂

largest coefficients in z. Now, the common indices between ŜBSM and ŜGSM are selected
as the support indices for the updated support estimate Ŝ. Then k̂ − |Ŝ| iterations are
performed using the conventional OMP algorithm as shown in Algorithm 8 for the proposed
BAOMP method. The value L = bk̂/4c is chosen experimentally such that the number of
iterations is reduced without compromising the quality of the recovered signal x̂ for all
sparsity order values.

Figure 5.5 shows the performance of the BAOMP method for various L values during
CS recovery of anN = 2500−dimensional compressible signal with a sparsity order of k =

100. The performance is measured using Normalised Recovery Error (NRE), Probability
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Figure 5.5: Performance of BAOMP algorithm for different L values.

of False Support (PFS), and Iteration Gain (IG) as given below.

NRE =
‖x̂− x‖22
‖x‖22

,

PFS =
|ŜBSM ∩ ŜGSM ∩ SC |

|S|
,

IG =
|ŜBSM ∩ ŜGSM |

k̂
,

where S is the original support of the compressible signal, SC is the set containing in-
dices that do not belong to S, i.e., SC contains the indices of insignificant coefficients, and
|ŜBSM ∩ ŜGSM | represents the number of common indices between the BSM and GSM-
based support estimates. Here, NRE measures the quality of the recovered signal, PFS
measures the quantity of false support selection, and IG measures how fast BAMOP is
compared to OMP. From Figure 5.5, it is observed that for L = bk̂/4c = 25, the perfor-
mance measures are PFS=0, NRE ≈ 0, and IG ≈ 0.25, that is, the BAOMP algorithm is
25% faster than the OMP algorithm.
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Algorithm 7 Estimation of the support using BSM
Input: Threshold τ , BSM-based measurement vector yBSM , and iteration number i = 1.
1. An initial estimate of the support is an empty set, i.e., ŜBSM = ∅.
2. Iteration begins.

do while (i ≤MBSM)

if (|yBSM(i)| > τ) ŜBSM = ŜBSM ∪ {i, i + MBSM , i + 2MBSM , ..., i +
((N/MBSM)− 1)MBSM}.

i = i+ 1.

end

3. Iteration ends.
Output: The estimated support: ŜBSM .

5.3 Performance comparison of proposed ML estimators
and BAOMP methods with other existing methods

The proposed ML method, followed by the Viterbi algorithm or Kalman filtering method,
is used for SOE during CS acquisition and recovery. The proposed BAOMP method is used
for CS recovery. In this section, performance measures such as the SOEE and NRE of the
proposed methods are compared with existing methods using synthetic signals.

The SOEE is given as,

SOEE =
|k̂ − k|
k

.

The Signal to Noise Ratio (SNR) setting in evaluating the SOEE and NRE performances is
calculated at the acquisition side, and it is given as,

SNR = 10 log10

(
‖Φx‖22
‖ϑ‖22

)
. (5.7)

For all the simulations shown here, a Windows 7 Operating System-based PC with a pro-
cessor running at 3 GHz clock speed and 4 GB RAM is used.

5.3.1 SOEE performance comparison using a synthetic signal

A simulation was performed to compare the SOEE performance of the KML method
with other SOE methods such as Lopes [28], 2-GMM [30], eigenvalue [46], trace [29],
SPAMP [35], and TS-ACSS [34]-based methods.
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Algorithm 8 Estimation of the support using the BAOMP method and recovery of the
compressible signal

Input: GSM ΦGSM , Measurement vector yGSM , BSM estimated support ŜBSM , Sparsity
order estimate k̂, and i = 1.

1. Initial residual: r = yGSM .

2. Initial estimate of the support of the compressible signal: Ŝ = ∅.

3. z = ΦT
GSMr {ΦT

GSM denotes the transpose of ΦGSM}.

4. GSM-based initial estimate of the support: ŜGSM = support of L largest compo-
nents (in terms of magnitude) in the vector z.

{We choose L = bk̂/4c so that the error in the initial estimate of the support is
less.}

5. Find the common support among the BSM- and GSM-based measurements: Ŝ =
ŜBSM ∩ ŜGSM .

6. Update the residual r = yGSM − (ΦGSM)|Ŝ(ΦGSM)†|ŜyGSM ,

{(ΦGSM)|Ŝ is the sub-GSM matrix formed by selecting the columns indexed by the

support Ŝ and (ΦGSM)†|Ŝ is the pseudo-inverse of (ΦGSM)|Ŝ}.

7. Find the size of the common support: |Ŝ|.

8. Iteration begins.

do while (i ≤ (k̂ − |Ŝ|))
z = ΦT

GSMr.
Select the index of the largest component (in terms of magnitude) in the

vector z.
Update the support estimate Ŝ by adding the selected index to it.
r = yGSM − (ΦGSM)|Ŝ(ΦGSM)†|ŜyGSM .

i = i+ 1.
end

9. Iteration ends.

10. The recovered signal x̂ = (ΦGSM)†|ŜyGSM .

Output: The recovered compressible signal: x̂.
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Figure 5.6: SOEE performance comparison for different SNR values.

In the simulation, an N = 2500−dimensional synthetic compressible signal was gener-
ated, whose sparsity order k was kept constant at k = 250. At every time step, the number
of BSM measurements taken was b 1

1−λc ≈ 157 for an optimal value of λ = 0.9936. For
the Lopes method, 2k Cauchy sensing matrix-based measurements are obtained in every
time step to compute the `1 norm for SOE. For eigenvalue- and trace-based methods, 2k

GSM-based measurements were obtained. The total number of time steps considered is
k/2. Thus, the total number of measurements obtained by the KML method is 78k com-
pared with k2 measurements obtained by other methods. Throughout the simulation, the
support set remained the same, whereas the amplitudes of the significant coefficients varied
according to normal distribution. The estimated sparsity order in every step is averaged for
the Lopes, 2-GMM, TS-ACSS, SPAMP, and proposed KML methods. For the eigenvalue-
and trace-based methods, only a single estimate is available after k2 measurements. For the
SPAMP method, the weak matching parameter is chosen as 0.5, and the estimation factor
is kept at 0.2 for better results.

The performance was evaluated in terms of SOEE for different SNR values, as shown
in Figure 5.6. The simulation results show that the KML method has better SOEE perfor-
mance than the other methods. It is observed that the performance of the Lopes method is
inferior and substantially invariant to the SNR owing to the use of the random Cauchy sens-
ing matrix for which the variance is infinite. The 2-GMM SOE method requires knowledge
of the energy of the significant coefficients for constructing the sparse Gaussian matrix,
which is seldom known a priori. It also has an Expectation Maximization (EM) algo-
rithm that adds to the complexity. The eigenvalue- and trace-based methods require at
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least k2 measurements, which are very expensive compared to other existing methods. The
TS-ACSS performs a two-step SOE in which the first step performs coarse SOE, whose
performance deteriorates with larger sparsity order values, and the second step refines the
coarse SOE with the help of signal recovery, which is a time-consuming process. In addi-
tion, the first step was accurate only with additional measurements. Compared with other
existing methods, the proposed KML method has the advantage of requiring three times
fewer measurements with better performance.

5.3.2 NRE performance comparison using synthetic signals

The NRE performance of the proposed method (Composite sensing-KML) is compared
with (i) other similar BSM methods for different sparsity order values, and (ii) 2-GMM [67],
DBBD-Kronecker [41, 42], AS-SaMP [39], OAMP [40], and traditional GSM methods for
different SNR values.

5.3.2.1 Performance comparison with other BSMs for different sparsity order values

A set of synthetic compressible signals of dimension N = 5000 with various sparsity order
values k = 50 to k = 400 was generated. The generated signals are acquired and recovered
using (i) the proposed composite sensing-KML-BAOMP method, (ii) random sparse BSM
sensing followed by the BAOMP method, and (iii) DBBD matrix sensing [41] followed by
modified Kronecker-based CS recovery [42]. For a given sparsity order k of a compressible
signal, the proposed composite sensing matrix is designed using Equations (5.3) and (5.4).
The random sparse BSM was designed with the same λ value as that of the proposed deter-
ministic BSM. However, the ones in each row are randomly distributed. Both the random
sparse BSM and DBBD methods obtain fixed M = 1800 measurements for k < 300 and
fixed M = 2500 measurements for 300 ≤ k ≤ 400, which is greater than the number of
measurements obtained by composite sensing for a given k. The NRE performance for the
10 dB SNR settings is shown in Figure 5.7.

The simulation results show that the proposed composite sensing matrix outperforms
both the random sparse BSM and DBBD sensing matrices with fewer measurements for
all given sparsity order values. The probability of missing a significant component dur-
ing acquisition was higher for random sparse BSM, resulting in poor NRE performance.
Similarly, the high probability of incorrect support selection during recovery results in in-
ferior NRE performance for the DBBD matrix-based method. The better performance of
the composite sensing matrix is due to the use of GSM, which has better RIP property.
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Figure 5.7: NRE performance comparison for different sparsity order values.

When k < 300, a smaller variance in KML results in minimal and invariant NRE. For the
random sparse BSM and DBBD methods, the NRE remains invariant to k as the number
of measurements M = 1800 is adequate for k < 300. When k ≥ 300, the NRE perfor-
mance degrades as the variance of the KML increases for the composite sensing matrix.
However, even if k ≥ 300, the NRE performance of KML is better than that of other BSM-
based methods. For k ≥ 300, the sensing matrix becomes too sparse for the random sparse
BSM and DBBD methods, resulting in degraded NRE performance, and they require more
measurements (M > 2500) to improve the NRE performance.

5.3.2.2 Performance comparison: For different SNR values

A time-varying synthetic compressible signal of dimension N=2500 is simulated for dif-
ferent SNR settings. Throughout the simulation, the sparsity order k was kept constant at
k = 250 with varying support and amplitude. After acquisition and recovery using different
CS methods, the NRE performance was compared.

Simulation results show the (i) improved performance of the proposed KML-based
SOE followed by BAOMP-based recovery compared to the 2-GMM-based SOE method
followed by OMP-based recovery, AS-SaMP-based recovery, OAMP-based recovery, and
DBBD-Kronecker-based CS recovery, and (ii) comparable performance with GSM fol-
lowed by basis pursuit, especially for low SNR conditions, as shown in Figure 5.8. The
high probability of support estimation errors in the DBBD-Kronecker method results in
poor NRE performance. The inaccuracy in estimating the statistics of the signal for the
2-GMM method affects NRE performance. The AS-SaMP and OAMP methods were fed
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Figure 5.8: NRE performance comparison for different SNR values.

with the optimal parameters for the given sparsity order k = 250. Thus, their NRE per-
formance is similar to that of the proposed method. However, tuning the parameters in
real time is a challenging task for time-varying sparsity orders. Although basis pursuit has
a better NRE performance, its higher computational complexity and longer recovery time
are unsuitable for real-time recovery.

5.3.3 Performance comparison using recovery running time

A set of synthetic compressible signals of dimension N = 2500 with various sparsity order
values k = 50 to k = 400 was generated, and the SNR was maintained at 10 dB. The
generated signals were acquired and recovered using (i) the proposed composite sensing
followed by the KML-BAOMP method, (ii) GSM sensing followed by the sparsity-aware
OMP method, (iii) GSM sensing followed by AS-SaMP recovery, and (iv) GSM sensing
followed by OAMP recovery. The running time for recovering the compressible signal is
shown in Figure 5.9 and it is observed that KML-BAOMP is faster and outperforms all the
existing methods for all sparsity order values.
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Figure 5.9: CS recovery run-time performance comparison for different sparsity order
values. It is observed that the proposed BAOMP method is at least 1.5 times faster than the
existing methods for a given sparsity order.
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Chapter 6

Real-world applications

In this chapter, the proposed ML sparsity order estimators and BAOMP-based recovery
algorithms are applied to real-world applications such as (i) acquisition and recovery of
vibration signals, (ii) channel estimation, and (iii) recovery of ECG signals. Then, the
performance of the proposed methods is compared with that of existing approaches.

6.1 Acquisition and recovery of vibration signals

Structural health monitoring (SHM) [68, 69] is generally performed to assess the integrity
of structures in aerospace and related industries. SHM entails analysis of the time-frequency
domain of the vibration signals that emanate from these structures for maintenance, safety,
and reliability checks. For this purpose, a large set of vibration signals is acquired for
identifying the excited frequencies during different operating conditions of the concerned
structure. It would be preferable if these vibration signals could be compressed without
sacrificing information in order to reduce data storage, processing power, and execution
time.

CS-based SHM was recently investigated in [70, 71, 72, 73, 74, 75] for compressing
vibration and its related signals, and it has been shown that vibration signals are acquired
efficiently using the CS method. Bao et al. [70] and [71] studied the CS technique to
acquire acceleration signals to derive the vibration characteristics of a bridge. The recon-
struction of missing wireless SHM measurements was dealt with using CS recovery in [73]
assuming that the sparsity order is known beforehand. A study on shock data acquisition
using CS was presented in [74], which showed that shock signals are better compressible on
wavelet bases. Recently, the CS of vibration signals from wireless sensor nodes exploiting
group sparseness was analyzed in [75], which provided promising results for applying CS
to vibration signals. All available CS-based SHM methods assume that the sparsity order is
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known beforehand and does not vary with time. However, these assumptions were invalid.
These circumstances indicate that SOE has become a vital problem for the better com-
pression and recovery of vibration signals. Hence, the proposed BSOE and GSOE-based
SOE estimator methods are applied to real-world vibration signals, and their performance
is evaluated and compared with existing SOE and recovery methods.

6.1.1 Compressibility analysis of vibration signals

Real-world vibration signals are available from Mide Technologies [59] and are analyzed
for performance evaluation. In this section, the vibration signals acquired from an aircraft
and semi-trailer truck are analyzed.

6.1.1.1 Case 1: Vibration signal acquired from an aircraft during its climb

A snapshot of the smoothly varying vibration signal acquired using an accelerometer mounted
on the surface of an aircraft during its climb is shown in Figure 6.1(a). The signal was
sampled at 2500 s, and its time-frequency spectrogram is shown in Figure 6.1(b). The
spectrogram reveals that the vibration signal is compressible in the frequency domain and
that the number of significant frequency coefficients varies with time.

As compressibility depends on the number of significant frequency coefficients, it is
essential to know a priori that which orthonormal representation bases preserve the energy
of the vibration signal in fewer significant frequency coefficients and provide the minimum
sparsity order. Hence, the vibration signal is analyzed using the DCT, DFT, and discrete
wavelet transform (DWT). To avoid spectral leakage, a Hamming window was applied
to the vibration signal during DFT analysis. In every analysis, a segment of N = 2500

samples was transformed into 2500 frequency or scaling coefficients. The absolute values
of these coefficients are sorted in descending order as functions of the new indices for each
transform. The sorted values of one of the analysis segments are shown in Figure 6.2. The
sorted values obey the power-law decay property of compressible signals. For a smoothly
varying signal, DCT and DFT result in a faster decay of the sorted values and thus have
better compressibility than DWTs. Because the original vibration signal is contaminated
by sensor noise, all the frequency coefficients have a non-zero magnitude. This necessitates
the identification of significant coefficients for the computation of sparsity order. Hence,
the index at which the cumulative sum of the squared sorted values meets a threshold value
is measured as sparsity order k. The threshold value is the energy of the uncontaminated
vibration signal, and is assumed to be 95% of the energy of the contaminated signal. It is

86



16.31 16.32 16.33 16.34 16.35 16.36
−30

−20

−10

0

10

20

30

Time (s)

A
m

pl
itu

de
 (

g)

(a) A segment of vibration signal sampled at 2500 Hz

(b) Spectrogram of the entire vibration signal

Figure 6.1: Vibration signal measured outside of an aircraft during its climb and its Time-
Frequency spectrogram. The spectrogram shows that only a few coefficients are significant
having distinguishable magnitudes.

evident from Figure 6.3 that DCT provides better compaction than DFT, and thus provides
a better sparse representation for a given NRE of 5%.

6.1.1.2 Case 2: Vibration signal acquired from a semi-trailer truck during its transit

An entire vibration signal with transients due to shock acquired from a semi-trailer truck
during its transit and its frequency spectrum are shown in Figures 6.4(a) and (b), respec-
tively. As the signal is having transients, DWT and DCT provide a lower sparsity order.
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(c) Discrete wavelet bases

Figure 6.2: Illustration of compressibility using the power-decay property on applying
different bases. The absolute values of 2500 coefficients are sorted and the largest 1000
values are shown. It is seen that discrete wavelets have slower decay compared to other
bases and thus have poor compressibility.
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Figure 6.3: Time-varying sparsity order on different bases for every analysis segment of
2500 samples. It is evident that discrete cosine results in sparsity order values lesser than
Fourier and wavelet counterparts throughout the analysis.

6.1.1.3 Case 3: Vibration signal acquired from the aircraft during its cruise

A snapshot of the vibration signal acquired from the aircraft during its cruise and its spec-
trum over the entire duration are shown in Figures 6.5(a) and (b), respectively. During the
cruise, the vibration is benign, the dynamic range of the vibration signal is very low, and
amplitude variations are not smooth. This causes the energy of the signal to spread evenly
among all frequency components, and the signal is not compressible using any transform.

The performance metrics, such as the average value of the sparsity order and the com-
pression ratio (CR) obtained for all the analysis segments using each transform function
for all the vibration signals discussed above, are listed in Tables 6.1 and 6.2, respectively.
The analysis shows that (i) DCT provides better CR for smoothly varying vibration sig-
nals, and (ii) DWTs provide better CR when vibration signals have transients owing to
shock. In addition, it was observed that benign vibration signals with a lower dynamic
range were not compressible. Considering the above, the DCT is considered here as the
sparse representation matrix Ψ for analyzing the vibration signal.

6.1.2 Markov birth-death modeling of time-varying sparsity order of
vibration signals

The sparsity order of vibration signals vary according to the Markov birth-death process
model as shown in Fig 6.6. It is observed that sparsity order varies rapidly.
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(a) Entire segment of vibration signal sampled at 5000 Hz
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Figure 6.4: Vibration signal measured from a semi-trailer truck during transit and its DFT
spectrum.

Vibration signal Sampling rate Average Sparsity Order
(acquired from) (sps) DFT DCT DWT-db4 DWT-coif4

aircraft during climb 2500 373 298 524 649
semi-trailer truck 5000 428 354 368 356

aircraft during cruise 2000 828 708 1343 1459

Table 6.1: Average sparsity order analysis using different transform
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Figure 6.5: Vibration signal measured from an aircraft during the cruise and its DFT spec-
trum.

Vibration signal Sampling rate Average compression ratio
(acquired from) (sps) DFT DCT DWT-db4 DWT-coif4

aircraft during climb 2500 3.35 4.20 2.38 1.99
semi-trailer truck 5000 5.84 7.06 6.79 7.02

aircraft during cruise 2000 1.20 1.41 0.74 0.68

Table 6.2: Average compression ratio analysis using different transform
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Figure 6.6: Markov birth-death modeling of time-varying sparsity order of vibration sig-
nals
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6.1.3 Performance evaluation of proposed estimators and recovery method

The vibration signals acquired from a semi-trailer truck and aircraft were analyzed using
the methods listed in Table 6.3. The 2-GMM method is provided with the knowledge of
the energy of significant coefficients for the construction of a sparse GSM. The estimated
sparsity order is the input for the CS recovery of the vibration signals for the proposed
BAOMP method and the OMP algorithm for the 2-GMM method. In the traditional CS
method, the OMP algorithm is provided with the original sparsity order value. For the
SPAMP method, the weak matching parameter is chosen as 0.5 and the estimation factor is
kept as 0.2 for better results. For the SBL method the noise variance and the thresholding
parameters are kept as 0.02 and 10−4, respectively for the optimal performance.

Methods Acquisition method Recovery method
Proposed method BSM+GSM+KML KML+BAOMP

Traditional CS GSM satisfying RIP Basis Pursuit
2-GMM sparse GSM EM+OMP

DBBD-Kronecker DBBD Kronecker
SPAMP GSM satisfying RIP SAMP

SBL GSM satisfying RIP Bayesian learning
KFCS GSM satisfying RIP Dantzig selector + KF

DCT compression DCT Inverse DCT

Table 6.3: CS acquisition and recovery methods used for NRE comparison.

For the vibration signal measured from the aircraft, each analysis segment contained
2500 samples. For the vibration signal measured from a semi-trailer truck, each analysis
segment had 5000 samples. The analysis segment was normalized to have unit energy.
For KML, 2-GMM, and SPAMP methods, the sparsity order is estimated for each analy-
sis segment. Based on the estimated sparsity order k̂(n), measurements were obtained for
recovery at the (n + 1)th time step. Using these measurements, the vibration signal was
reconstructed using the respective recovery methods. Then, the NRE performance measure
was compared with the traditional random GSM-based CS method, DBBD-Kronecker-
based CS method, SBL method, KFCS method, and DCT-based compression method. For
the traditional CS, DBBD, SBL, and KFCS methods, M = 4kmax measurements are ob-
tained. The results of the NRE for both vibration signals for every 20 analysis segments are
plotted in Figures 6.7(a) and (b). A snapshot of the reconstructed vibration signal obtained
using the KML method followed by the BAOMP method for the vibration signal acquired
outside the aircraft during its climb is shown in Figure 6.8 along with the original signal.
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During recovery, the BAOMP method denoises the insignificant coefficients. Hence, the
reconstructed signal is smooth over time compared with the original signal.

Although the proposed KML-based CS method has a slight degradation in NRE com-
pared with the classical DCT method, the hardware complexity of acquiring a compressible
signal isO(MN) (owing to the M ×N sensing matrix), which is less than that of the DCT
method’s O(N2) (owing to the N × N DCT matrix). Thus, it requires fewer hardware
resources, storage, and power for the acquisition of time-varying compressible signals with
a slight tolerable degradation in the recovery performance compared to the DCT method.
It provides a good CR as it obtains a minimal number of measurements based on the es-
timated sparsity order compared to other CS methods. The existing SOE methods are not
optimal during acquisition and result in less CR as they either (i) obtain a fixed number
of measurements based on the conservative assumption of having maximum sparsity order
kmax or (ii) obtain an additional set of measurements for the SOE.

It can be observed from Figures 6.7(a) and (b), the CS-based compression methods re-
sulted in a slightly higher NRE than the traditional DCT-based compression method. The
reasons for this are described in the following. The DCT method knows the support and
amplitude of the significant coefficients among the N coefficients and approximates the in-
significant coefficients to zeros. Hence, its NRE is the energy of insignificant coefficients,
which is 0.05. The CS recovery methods do not have a priori knowledge of the signifi-
cant coefficients, and they estimate the support and amplitude from the available M < N

measurements. There are some of the weakest significant DCT coefficients whose am-
plitudes are very close to the threshold value, distinguishing significant and insignificant
coefficients. The CS recovery algorithms detect stronger information-bearing significant
coefficients well above the threshold without any failure. However, sometimes they may
not select the weakest significant coefficients very near the threshold, as the CS sensing
matrices are not perfect orthonormal matrices for identifying the support of such coeffi-
cients. This effect is illustrated in Figure 6.9 which represents the DCT spectrum plot of
one of the analysis segments of the vibration signal measured outside the aircraft. Here,
the DCT coefficients before and after the sparse approximations and the estimated DCT
coefficients using the proposed KML-BAOMP-based CS recovery are shown. It was ob-
served that the DCT coefficients with indices from 83 to 87 and 100 to 102 had magnitudes
slightly below and above the threshold, respectively, and were not detected during CS re-
covery, contributing to the slightly higher NRE compared to the DCT-based compression
and recovery. However, among the CS methods, the proposed KML-BAOMP method per-
forms better than the 2-GMM, DBBD-Kronecker, SPAMP, and AS-SaMP methods and is
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Figure 6.7: NRE performance comparison.
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Figure 6.8: Recovery performance of the KML method followed by the BAOMP method
on reconstructing the vibration signal acquired on the skin of an aircraft during its climb.

comparable to the traditional GSM-based method, SBL and KFCS methods.

6.2 Estimation of channel impulse response using MLS es-
timator

Consider the problem of estimating the wireless channel impulse response (CIR) from the
model,

y = Xh + ϑ,

where y,X,h and ϑ are the received measurements, Toeplitz matrix of the known pilots,
CIR, and measurement noise, respectively. The above model becomes the CS acquisition
model as the CIR h is sparse and X is carefully chosen as a sensing matrix. As the min-
imum number of measurements obtained is dependent on the sparsity order of CIR, the
sparsity order estimation is essential for reducing the number of pilots. Thus, the per-
formance of the proposed sparsity order estimator in terms of estimation accuracy was
evaluated using a real-world measured CIR obtained from the CRAWDAD dataset [76].
CIR was recorded using a 44-node wireless network. Multiple CIR measurements were
performed for each of the 44 × 43 = 1892 pairwise links between the nodes in a standard
office area by moving the transmitter and receiver between the nodes. A sample real and
imaginary realization of the CIR between nodes 1 and 2 is shown in Figure 6.11(a). The
time-varying sparsity order is shown in Figure 6.11(b) by stacking several realizations of
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Figure 6.9: DCT spectrum plot comparing the recovery performances of DCT and KML-
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not get recovered by the CS methods resulting that DCT based recovery method performing
better than any CS methods.

CIR measurements. It is observed that sparsity order variation follows a discrete Markov
process with transition probabilities

∑
d>0 pd = 0.16,

∑
d<0 pd = 0.20, and p0 = 0.64 re-

sulting in fast sparsity order variation as shown in Figure 6.10. As the sparsity order varies
fast, the ML estimates of transition probabilities are computed as equally distributed i.e.,∑

d>0 p̂d = 0.33,
∑

d<0 p̂d = 0.33, and p̂0 = 0.34. The MLS estimation was performed
using the Viterbi algorithm. The unfiltered ML and refined MLS estimates are presented in
Figure 6.11(b), along with the actual sparsity order, and it is verified that the MLS estima-
tion refines the unfiltered ML estimates.

6.3 Using real-world electrocardiogram signal

Real-world electrocardiogram (ECG) signals are available in Physiobank ATM [77]. An
ECG signal sampled at 720 sps for a duration of 60 s was analyzed to evaluate the perfor-
mance of the proposed ML-MLS algorithm. The ECG signal was divided into 60 segments,
and each segment had a duration of 1 s. Each segment was analyzed using a DCT matrix,
and it was observed that the ECG signal was sparse. The sparsity order varies rapidly in
time, following a discrete Markov model with transition probabilities

∑
d>0 pd = 0.17,∑

d<0 pd = 0.17, and p0 = 0.66 as shown in Figure 6.12. The maximum variation in
the sparsity order is ±5 at a given time step. The transition probabilities are estimated
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Figure 6.10: Time-varying sparsity order of channel impulse response

as
∑

d>0 p̂d = 0.34,
∑

d<0 p̂d = 0.20, and p̂0 = 0.46 from the sequence of the filtered
ML estimates. The time-varying sparsity order and its ML and MLS estimates are shown
in Figure 6.13 and it can be seen that the MLS algorithm provides refined estimates of
the sparsity order. Using the estimated sparsity order, the ECG signal is recovered using
the OMP algorithm. The recovered signal matches the original ECG signal as shown in
Figure 6.14. The recovered signal has NRE ≈ 5% compared to the original signal.
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Figure 6.11: Estimation of channel impulse response.

99



0 10 20 30 40 50

75

80

85

90

Time n (s)

S
p
ar
si
ty

or
d
er

k
(n
)

 

 
Discrete Markov Model (p<0 =

∑
d<0 pd = 0.17, p0 = 0.64, and p>0 =

∑
d>0 pd = 0.17)

Time-varying sparsity order of ECG signal

Figure 6.12: Time-varying sparsity order of an ECG signal
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Chapter 7

Complexity comparison

The performance of the ML-MLS estimation technique is compared in terms of com-
putational complexity with the Lopes method [78], 2-GMM method [30], trace-based
method [29], DCS-AMP method [26], and KFCS method [23] for a given M number of
measurements, as follows.

The proposed estimator requires M = MBSM + MGSM measurements per time step,
where MBSM measurements are used to estimate the mean energy of the supporting com-
ponents and MGSM measurements are used to estimate the sparsity order. The computa-
tional complexity for estimating the instantaneous sparsity order using m measurements
was O(m).

At any time step, the Viterbi algorithm performs MLS estimation over a block of L
length whose computational complexity is O(D2

RL), where DR = kmax − kmin + 1 is
the dynamic range of the sparsity order, kmin and kmax are the minimum and maximum
sparsity orders, respectively, in the L length block. Thus, the overall computational com-
plexity of the proposed ML-MLS method was O(M)+O(D2

RL). The computational com-
plexity of the other methods is listed in Table 7.1, where the remarks briefly explain their
computational complexity. The proposed ML-MLS estimation technique demands an ad-
ditional computational complexity of O(D2

RL) which is less than O(Mk3) of the KFCS
and O(MN) of the DCS-AMP methods. Except for the estimation of the mean energy of
the supporting components, the ML-MLS technique does not involve iterations.

The computational complexity of the existing SOE and recovery methods was com-
pared with the proposed KML and BAOMP methods. The computational complexity of the
SOE method is based on the number of measurements and iterations. The KML method
estimates the sparsity order k directly from MBSM < M measurements. The computa-
tional complexity of the proposed KML is dependent on (i) the probability p0 computation,
(ii) the iterations involved in the joint estimation of the statistics of significant coefficients
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Method Computational
complexity

Remarks

Lopes O(2M) M Cauchy andM Gaussian basis-based mea-
surements

2-GMM O(kM) k iteration per measurement for EM algo-
rithm

Trace O(M3) Computation of Covariance of measurements
KF-CS O(Mk3) Complexity of Dantzig selector
DCS-
AMP

O(MN) AMP’s M iterative updation of N variables

Table 7.1: Computational Complexity Comparison

and sparsity order, and (iii) the Kalman filtering (KF) process. Probability p0 is estimated
by identifying the measurements from MBSM measurements that are devoid of significant
coefficients. This identification requires a computational complexity of O(MBSM). The
joint estimation of probability q, statistics of significant coefficients, and sparsity order us-
ing the BSOE require N(1 − λ) computations per iteration. The simulations show that a
maximum of ten iterations are required for the convergence of the joint estimation. Be-
cause the number of iterations is fixed and independent of MBSM measurements, the total
computational complexity is dependent only on N(1 − λ), and it is O(N(1 − λ)) for the
joint estimation step. The KF used for refining the BSOE estimate is scalar, and the com-
putational complexity is O(1), which is less than the complexity of the BSOE. Thus, the
overall computational complexity of KML is O(MBSM +N(1− λ)).

Other existing SOE methods use all the M measurements for SOE. Given M measure-
ments, the eigenvalue and trace-based methods require complex Matrix operations with a
computational complexity O(M3). The computational complexity of the EM algorithm in
the 2-GMM method is O(kM). The Lopes method computes the median of the Cauchy
sensed measurements and the mean of the energy of Gaussian sensed measurements with a
computational complexityO(M logM) to estimate the `1 and `2 norms for the SOE. Since
MBSM + N(1 − λ) � M , the proposed KML method is very advantageous for SOE in
terms of less computational complexity compared to other existing methods.

The computational complexity for the OMP and SPAMP-based CS recovery methods is
O(k̂MN), whereas for the proposed BAOMP method is O(k̂− |Ŝ|MN). As |k̂− Ŝ| < k̂,
the BAOMP method requires fewer computations.

The run-time complexity of the proposed KML and BAOMP methods is evaluated and
compared with other existing SOE methods for the real-world aircraft vibration signal anal-
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ysis using a Windows 7 Operating System-based PC with a processor running at 3 GHz
clock speed and 4 GB RAM. The values of average elapsed time for the SOE and recovery
on analyzing each segment of the vibration signal are shown in Table 7.2 and Table 7.3,
respectively.

SOE methods Algorithms Elapsed time
KML BSOE + Kalman filter 40 ms +2 ms=42 ms
Lopes median + mean computation 64 ms

2-GMM EM algorithm 132 ms
SPAMP Pre-estimation algorithm 84 ms

Table 7.2: Elapsed time comparison among SOE methods

Recovery methods Algorithms Elapsed time
KML+BAOMP KML + BAOMP 42+202 ms=244 ms

SPAMP pre-estimation + SAMP 84+384 ms = 468 ms
2-GMM+OMP EM algorithm + OMP 132+398 ms = 530 ms

Table 7.3: Elapsed time comparison among recovery methods

The time elapsed by the proposed KML and BAOMP methods is significantly less than
that of other existing methods. Considering the acquisition of less number of measure-
ments, reduced computational and run-time complexity, and better recovery performance,
the proposed methods are the best candidates for efficient acquisition, compression, and
recovery of vibration and similar compressible signals.
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Chapter 8

Discussions and conclusions

The advantages of the proposed CS acquisition and recovery systems are addressed in this
chapter. A study of the effects of the ML estimation and the composite sensing system on
resource usage and execution speed is presented. The applicability of the proposed SOE
methods is also discussed here.

8.1 Discussions on results

The following discussion shows how the proposed Kalman filtered ML (KML) estimator
enhances the CS acquisition and how the BAOMP method increases the execution speed of
CS recovery.

8.1.1 KML estimation method during CS acquisition

The major problem in CS is estimating the sparsity order k of the compressible signal to
reduce the measurements sizeM . However, real-time applications demand that sparsity or-
der needs to be estimated from the measurements itself. Our proposed method of composite
sensing followed by KML provides a solution to this chicken-egg problem of sparsity order
determining the measurements size, and the measurements determining sparsity order.

We combined sparse BSM and dense GSM for composite sensing of compressible sig-
nals during CS acquisition. As the sparse BSM has very few ones in each of its columns,
it exhibits a weak RIP and is not suitable for the perfect recovery of the compressed signal
with limited measurements. However, we exploited the weak RIP for SOE. The challenge
in the design of the BSM is to cater to the requirement of estimating the time-varying spar-
sity order of the compressible signal with limited measurements. Our solution for this chal-
lenge resulted in a BSM adjusting its dimensions and entries according to the time-varying
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sparsity order. The BSM is deterministic, which also suits the practical implementation of
the CS acquisition and recovery systems.

We derived a blind BSOE method that does not require any a priori knowledge of signal
and noise statistics. These statistics were estimated from the statistics of the measurements
and BSM entries. We proposed KML to reduce the variance of the BSOE and improve the
SOE performance. Thus, the proposed KML results in an optimal number of CS measure-
ments, which determines the efficient use of CS acquisition hardware. A simulation of the
SOEE performance (Figure 5.6) shows that the proposed KML method performs better for
all SNR conditions, even with three times fewer measurements than other SOE methods.

8.1.2 KML-BAOMP during CS recovery

The KML method performs SOE from CS measurements obtained during CS recovery.
The SOE during recovery was the same as that during acquisition. The better SOEE per-
formance of KML resulted in better NRE performance compared with other existing SOE
and support estimation methods. The better NRE performance owing to the composite
sensing and KML methods is demonstrated by analyzing synthetic and real-world signals,
as shown in Figures 5.7, 5.8, 6.7a, and 6.7b.

8.1.3 Impact of KML on CS acquisition and recovery

Because the sparsity order determines the measurement size, the SOE must be accurate for
efficient CS acquisition and recovery in terms of the optimal use of hardware resources and
the quality of the recovered signal. Suppose the SOE error k̂ − k = δk, the error in the
number of measurements is,

Mk −Mk+δk =
⌈
k(0.63 + 2 log

(
N
k

)⌉
−
⌈
(k + δk)(0.63 + 2 log

(
N

k+δk

)⌉
=

⌈
log
(
k+δk
k

)
− δk

(
0.63 + 2 log

(
N

k+δk

))⌉
≈ δk

(
0.63 + 2 log

(
N

k+δk

))
.

where Mk is the number of measurements required for the true k value and Mk+δk is the
number of measurements required for the estimate k̂ = k + δk. Thus, the difference in the
number of measurements is linearly proportional to the SOE error δk.

• Case 1: If δk > 0, then Mk+δk > Mk resulting in excessive measurements and the
inefficient use of hardware resources. However, the recovery performance was not
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affected.

• Case 2: If δk < 0, then Mk+δk < Mk resulting in a fewer number of measurements
than the required degrading the recovery quality.

It has been shown in Chapter 4 that Kalman filtering reduces the variance of BSOE, thereby
reducing the estimation error δk � k, resulting in a minimal error in M and negligible
impact on CS acquisition and recovery.

8.1.4 Impact of KML on the execution speed of CS

The KML method has an impact on both the CS acquisition and recovery processes. The
time complexity analysis for the KML method shows that the acquisition rate is not affected
during CS acquisition and execution speed is increased during recovery as given below.

8.1.4.1 Impact on CS acquisition

During the acquisition, the CS results in M � N compressed samples for a given time
interval T . Because the proposed KML method determines M based on the previously
estimated sparsity order k̂(n− 1), the time required for the SOE should be < T . The time
complexity of the KML method depends on the number of iterations involved in estimating
probability q as given in Step 5 of Algorithm 1. Typically ten iterations are sufficient for the
convergence of the KML method, and the time taken for convergence is significantly less
than < T s. For example, Chapter 7 shows that the KML method requires 42 ms compared
to T = 1s when analyzing real-world vibration signals. Thus, until the time required for
the SOE is less than a fixed interval T , the KML method does not reduce the CS acquisition
rate.

8.1.4.2 Impact on CS recovery

For greedy recovery algorithms, the sparsity order k is an input. If k is unknown, the greedy
algorithms iterate kmax times or, in the worst case, M times. For real-time applications,
when k is unknown and assumed to be kmax, the iteration places the constraint that kmaxρ <
T , where ρ is the time elapsed per iteration. By using the proposed KML and BAOMP
methods, the constraint becomes (k̂ − |Ŝ|)ρ < T . Because (k̂ − |Ŝ|)ρ < kmaxρ, the KML
method is fast, and the real-time recovery of fast-varying compressible signals is possible.
For applications requiring offline recovery and analysis, CS execution increases by kmax

k̂−|Ŝ|
using the proposed methods.
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8.1.4.3 Impact on mismatches on the prior model for the SOE

The proposed KML method relies on the prior models for amplitude and sparsity order.
These models are advantageous as they represent a wide range of information, including
knowledge gained a priori about the process that created the signal as well as information
about measurement system, noise characterization, underlying probabilistic structure, etc.
The greater the amount of prior knowledge we can incorporate into the algorithm, the
lower the resulting error variance. However, the approach of model-based estimation would
perform poorly if the models or their parameters weren’t well known enough.

In the proposed KML method, the amplitude of significant components is assumed to
be Gaussian with mean µs and the variance σ2

s . The ML estimator for the sparsity order is
derived from the measurements statistics. Though the estimator does not demand Gaussian
assumption for the amplitude of significant components, it assumes that the amplitude’s
mean is µs and the variance is σ2

s and it provides ML estimates every time step. Then, using
the Discrete Markov model, these ML estimates are later refined by Maximum Likelihood
Sequence (MLS) estimation method or Kalman filtering method. Though the error in the
estimates of mean and variance of amplitude of significant components result in error in
instantaneous sparsity order estimates, the discrete Markov model based MLS or Kalman
filter method would correct those errors. However, as the Markov model parameters are
estimated from the instantaneous estimates, the correction would be to an extent when
the estimation of Discrete Markov model parameters have lesser variance. Thus under
such model mismatches i.e., parametric and statistical uncertainties to certain extent„ the
proposed method with good history of past measurements exhibit good amount of resilience
and robustness in terms of their mean squared error variation.

8.1.5 Applicability of the KML method

The KML method applies to sparse and compressible signals. It should be noted that some
signals such as noise are neither sparse nor compressible. Sometimes compressible signals
become non-sparse due to disturbances. For example, the vibration signal of a rocket is
almost a random signal during the transonic regime with rich in significant components
making the signal non-sparse. Here, we do not consider such non-sparse signals or condi-
tions. These signals or conditions will be understood while performing SOE using the KML
method. When the sparsity order k of the compressible signal is increased, the number of
measurements less than the threshold τ will decrease, i.e., the probability p0 = λk will de-
crease. Suppose the maximum sparsity order for a signal to be considered as compressible
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is kmax which leads to the minimum probability p0min = λkmax . If the estimated probabil-
ity p̂0 < p0min, the acquired signal is neither sparse nor compressible. In such cases, the
sensing matrix dimension matches with the signal’s dimension satisfying Nyquist sampling
conditions.

8.2 Conclusions

Novel practical implementable CS acquisition and recovery systems are proposed for dy-
namic sparse and compressible signals in this research work. The importance of sparsity
order estimation is emphasized for the CS acquisition and recovery. Suitable models for
the compressible signals, sparsity order, and composite sensing system are defined. We
combined sparse BSM and dense GSM for composite sensing of compressible signals dur-
ing CS acquisition. Though sparse BSM exhibits a weak RIP, we exploited the weak RIP
for SOE. The challenge in the design of the BSM adapting to the time-varying sparsity
order resulted in a BSM adjusting its dimensions and entries according to the time-varying
sparsity order. The BSM proposed is deterministic, which also suits the practical imple-
mentation of the CS acquisition and recovery systems.

Using the ML principles, two unique innovative SOE methodologies based on BSM and
GSM-based measurements have been developed. The BSM-based SOE, i.e., the BSOE
technique estimates sparsity order without the a priori knowledge on statistics of com-
pressible signals. Whereas, the GSM-based SOE, i.e, GSOE technique uses the estimate of
statistics of compressible signal obtained from BSOE for the ML estimation of sparsity or-
der. In the acquisition process, the ML estimators estimate sparsity order with a minimum
number of measurements without any additional cost or resources compared to any other
estimator. The instantaneous estimates are then refined using either of the two different
proposed approaches namely MLS estimation using Viterbi algorithm and Kalman filter-
ing. It is shown that the Viterbi algorithm-based MLS estimation technique is suitable for
estimating slow and moderately varying sparsity orders with lower computational complex-
ity. As Viterbi algorithm-based approach performs trace-back-based sequence estimation,
there is a delay in providing the sparsity order estimates. However, Kalman filtering-based
approach is instantaneous and has similar performance with respect to Viterbi algorithm-
based approach.

In the recovery process, a novel BAOMP method is proposed for estimating the sup-
port of the compressible signals using the BSM-based measurements. It is shown that
BAOMP reduces the recovery time by at least 25% compared to other existing methods.
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The proposed ML sparsity order estimation methods and BAOMP-based recovery method
show better performance in terms of various metrics in comparison with other methods
published thus far while analyzing real-world signals and synthetic signals.
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Chapter 9

Future works

The present work focuses only on the problem of estimating the sparsity order, and uses it
for the acquisition and recovery of time-varying sparse and compressible signals. However,
the problem of estimating and tracking time-varying sparse signals is three-dimensional,
where time-varying (i) sparsity order, (ii) support, and (iii) amplitude must be estimated
simultaneously. Hence, in future work, the characterization of time-varying sparsity or-
der and support together as a two-dimensional discrete Markov birth-death model and the
derivation of corresponding ML algorithms can be considered.

The amplitude of each of its supporting components shall be modeled using an inde-
pendent autoregressive (AR) process, and independent scalar Kalman filters (KF) shall be
employed to estimate and track the amplitude of the supporting components.

A simulation was carried out to see the performance of amplitude estimation using KF.
The support was kept time-invariant and thereby the sparsity order of the compressible sig-
nal was kept constant at k = 50 for the signal dimension N = 2500 for 50 time steps. The
amplitude of each those 50 components is varied using an AR process. In each time step,
the sparsity order was estimated using the KML method. Then an iterative BAOMP-based
CS reconstruction algorithm that works on thresholding operators was used to estimate the
probable k supporting components. Although the BAOMP algorithm is faster in execution
and easier to implement, it suffers from performance degradation similar to any greedy-
based CS recovery algorithms in the presence of strong measurement noise. Hence each
supporting component’s amplitude was filtered using independent scalar KFs knowing the
AR process model parameters. The improved performance by the KF in terms of recovery
error is shown in Figure 9.1.

The above idea of employing KF for refining the time-varying amplitude needs to ad-
dress the time-varying support and sparsity order i.e., the number of KFs required to run
depends on time-varying sparsity order. This problem can be tackled using two different
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Figure 9.1: Improved recovery performance by employing Kalman filtering of the BAOMP
estimate.

approaches. The first approach is discussed in Algorithm 9 which uses the coarse support
estimates of BAOMP for KF-based amplitude tracking and the innovation error of KF as a
feedback to BAOMP for refining the support.

The second approach is shown in Figure 9.2. Here, sparsity order is estimated ini-
tially and then BAOMP estimated supporting components’ amplitudes are refined using
KFs. Whenever the current estimated sparsity order does not differ from the previously es-
timated, then the BAOMP algorithm shall be bypassed, and previously estimated Kalman
filtered amplitude itself can be taken as the prior estimate for the KF. Then KF amplitudes
shall be used for updating the estimates of statistics of significant coefficients.
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Algorithm 9 Estimation of the time-varying sparse signal using KML-BAOMP-KF algo-
rithm
Input: Measurements y(n) : {y1(n), y2(n), .., ym(n)};

1. Estimate the statistics of the coefficients by using the BSOE algorithm given in
Algorithm 4.

2. Estimate the KML estimate of sparsity order.

3. Execute BAOMP algorithm to obtain an estimate of the support S(n) and a coarse
estimate of amplitude ŝ(n).

4. Kalman filtering:

4.1 Prior amplitude estimate: ŝ(n|n-1) = ŝ(n-1|n-1);

4.2 Prior error covariance: P(n|n-1) = P(n-1|n-1) + 1/k ̂(µ2
s + σ2

s)I;

4.3 Innovation error: ye,n = y(n|n)-Φŝ(n|n-1);

4.4 Kalman Gain: K = (P(n-1|n-1)ΦT (ΦP(n-1|n-1)ΦT + σ2
ϑI)−1);

4.5 Posterior error covariance: P(n|n) = (I−KΦ)P(n|n-1);
4.6 Posterior amplitude estimate: s(n|n) = s(n|n-1)+Kye,n;

5. Apply BAOMP to the innovation error to update support S(n) and amplitude ŝ(n).

6. Iterate steps [3]-[5] until yTe,nye,n ≤ 0.01.

7. x̂(n) = Ψŝ(n).

Output: Estimate of time-varying sparse signal: x̂(n).
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